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Abstract. A (k";n)-de Bruijn Cycle is a cyclic k-ary sequence with the property that every
k-ary n-tuple appears exactly once contiguously on the cycle. A (k",k*;m,n)i-de Bruijn
Torus is a k-ary k" X k% toroidal array with the property that every k-ary m X n matrix
appears exactly once contiguously on the torus. As is the case with de Bruijn cycles, the
2-dimensional version has many interesting applications, from coding and communications
to pseudo-random arrays, spectral imaging, and robot self-location. J.C. Cock proved the
existence of such tori for all m,n, and k£, and Chung, Diaconis, and Graham asked if it were
possible that » = s and m = n for n even. Fan, Fan, Ma and Siu showed this was possible
for k = 2. Combining new techniques with old, we prove the result for £ > 2 and show that
actually much more is possible. The cases in 3 or more dimensions remain.



1. Introduction.

A (k™;n)g-de Bruijn Cycle is a cyclic k-ary sequence with the property that every k-ary
n-tuple appears exactly once contiguously on the cycle. Such cycles, first discovered in 1894
by Flye St. Marie (see [5]), have found applications in the study of pseudo-random numbers,
cryptography, nonlinear shift registers and coding theory, and a vast literature exists (see

For r,s > 0 a (k", k®%; m, n)g-de Bruijn torus is a k-ary (k" x k®) toroidal array with the
property that every k-ary (m X n) matrix appears exactly once contiguously on the torus (see
Figure 1). In addition to the above we find interesting applications in robot self-location

19], pseudo-random arrays [18], and the design of mask configurations for spectrometers
13]. (For an interesting variation on this theme see [16]). Even cloth patterns have used
these designs, long before their mathematical properties were discovered (see [12]).

In [3], J.C. Cock proves the following (see also [17] for the binary case).

Theorem 1.1. For all m,n, and k (except n = 2 if k even) there is a (K", k%*;m,n)g-
de Bruijn torus with r =m and s = m(n — 1).

One might also define (R, S; m, n)g-de Bruijn tori as R x S toroidal arrays with the same
uniqueness property for m x n matrices, but our concern here will be with R and S both
powers of k£ only. We will say more about this in Section 5.

The reader may have noticed that the relations r + s = mn, k" > m, and k®* > n, are
necessary for the existence of a (k", k%; m,n)-de Bruijn torus. (If k™ = m, say, then the all
0’s matrix is found m times.) The sufficiency of these relations seems to be a rather tricky
problem, and we conjecture that, except possibly for very small values of m and n, the
conditions r + s = mn, k" > m and k® > n are sufficient for all k. In [2], Chung, Diaconis,
and Graham ask whether it is possible that “square” tori exist for even n. That is, can it
be that r = s and m = n? This question was resolved for the binary case by Fan, Fan, Ma,
and Siu [4], who proved

Theorem 1.2. There exists a (2",2";n,n)s-de Bruijn torus if and only if n is even.

Again, one should notice that r» = n?/2, so either n is even or k is a perfect square. Our
purpose here is to prove a bit more than was conjectured in [2].

Theorem 1.3.

a) For k odd there is a (k",k";n,n),-de Bruijn torus if and only if n is even or k is
a perfect square, and

b) For k even and n > 10, there is a (k", k";n,n)g-de Bruijn torus if and only if n is
even or k is a perfect square.



For part b) we will actually show that such tori exist for even n > 4 and for square &
and odd n > 11. Though we believe they exist, we have not found de Bruijn tori (when & is
even) for n = 3,5, or 7 (see [15] for the case n = 2). However, when n = 9 we can construct
examples if k£ is an even square divisible by 16.

2. Proof of Theorem 1.3.

We will prove Theorem 1.3 by using induction on n. If we write A € dBy, (K", k%;m,n)
we will mean that the array A is a (k", k%; m,n)-de Bruijn torus. (Likewise, dBy(k™;n) is
the set of all (k™;n)g-de Bruijn cycles.) If each column (resp. row) of A sums to 0 mod &k we
will say that A has property o (resp. 7). Also, we say that A has property o* if the columns
A, ..., Ags satisfy n-4; = 0 mod k, where the row vector n = (1,2,...,k"), and property
7* if its transpose AT has property o*.

Fact 2.1.
a) For k odd there is an array A € dBy(k?, k?;2,2) with property o, and for k£ an odd
perfect square there is an array A € dBy,(k/2, k'/2;1,1) with property o.

b) For k even there is an array A € dBy,(k%, k8;4,4) with property o, and for k an even
perfect square there is an array A € dBk(k121/2, K121/2. 11, 11) with property o.

Lemma 2.2. There is a function f such that if A € dBy(k",k*; m,n) has property o, then
f(A) € dBg(k", k5t m+1,n) and has property 7. Furthermore, if s > 1, n > 2, or k odd,
then f(A) has property 7*, and if A has property o* then f(A) has property o.

Theorem 1.3 then follows from Fact 2.1 and Lemma 2.2 by repeated applications of

Lemma 2.2, as the following argument shows (see Figure 2, where T is the transposition
operator).
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Figure 2. Induction using Lemma 2.2.

IfAe dBk(knz/Q, k"2/2; n,n) has property o then A; = f(A) € dBk(k"2/2, k("2+2")/2; n+
1,n) has properties 7 and 7%, Ay = Al € dBk(k("2+2“)/2,k"2/2;n,n + 1) has properties o
and o*, and A3z = f(4s) € dBk(k("2+2")/2, p*+2n42)/2. 0 1] 1) has property o. Fur-
thermore, Ay = f(A3) € dBk(k("2+2”)/2,k("+2)2/2;n + 2,n + 1) has properties 7 and 7%,
so Ay = AT € dBk(k("+2)2/2,k(”2+2")/2;n + 1,n + 2) has properties o and o*. Finally,
Ag = f(As) € dBk(k("+2)2/2, k("+2)2/2; n + 2,n + 2) has property o. L]

Thus we always obtain “square” tori with the extra property o.

We continue to assume Lemma 2.2 in order to handle Fact 2.1. Lemma 2.2 will be
proved in the next section.

Proof of Fact 2.1a. We follow Cock’s construction from Theorem 1.1 to find A €
dBy (k% k?;2,2) for k odd, needing only to check for property o. First, an example to
illustrate the method.

Let £ = 3, a = (001121022) € dB3(3%;2), and b = (012345678) € dBy(9';1). Let the
first column of A be a’, the second be the first shifted cyclically by the first digit, 0, of b,
the third be the second shifted cyclically by the second digit, 1, of b, ... and the 9*® be the



8th shifted cyclically by the 8% digit, 7, of b. Notice now that the first column is the 9t
shifted cyclically by 8 (see Figure 3).

N

I
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Figure 3. A € dB3(3%,3%;2,2) with property o.

The reason why this construction works is the way we encode a 2 X 2 k-ary matrix B.
For example, if we have B = (% g) then the 15¢ column of B is the 3'4 pair listed in aZ, and

the second column is the 7" pair listed in a”. To get from the 3™ to the 7** pair so that
they are next to each other, we shift by 4. Thus, B must be in columns 5 and 6 of A since

the shift 4 is the 5™ digit of b, as in Figure 3. In this way we can find every 2 x 2 k-ary
matrix in A (see [3] for the actual proof of Theorem 1.1).

Also, A has property o since each column is a de Bruijn cycle. Every digit of a (k™;n)-
de Bruijn cycle is listed £”! times, so the sum of all digits in the cycle is k™! (’2“), which is
divisible by k if k£ is odd and n > 1.

For k an odd square, any k'/2 x kM2 array A € dBk(kl/Z,kl/Q; 1,1), provided each

integer {0,1,...,k— 1} appears exactly once in the array. To obtain property o let the first
column of A be (@, RN | PRV @)T, add vk to get the second column, v/k more to
get the third, and so on. L]

Proof of 2.1b. In Section 4 we will show how to find A € dBy(k?,k;3,1) and how to use A

to obtain D € dBk(k4, k22, 3) with properties o and ¢*. Assuming this, we can now use a
sequence of f functions and transpositions to obtain our result. To ease the eye notationally,
we suppress k and write [r, s;m, n](«, §) for some A € dBy(k", k®; m, n) satisfying properties
« and . Then we have

[4,2;2,3](c0,0%)

4,5;3,3](0)
4,8:4, 3](
8,43, 4](
8,8;4,4](c

T,7%)
*

£,
1,
T
— o,0%)
£,

[
[
[ :
[ )-

The details are left to the reader.



As for £ an even square and n odd, we refer the reader to Claim 2.3 below to discover
Ae dBk(k3/2, k22, 1) with property o. From there we have

13,1;2,1 L5 13,3:3,1) 25 13,3:1,3} 5 {3,9;2,3} %5 {9,3:3,2}
Ty 9,740y L 17,9:2,4y L (7.17:3,4y L (7,25:4,4) L {2574, 4)
1 195,15:5,4) Ly {15,25;4,5) L5 {15,35; 5,5} L {15,45:6,5)
L, 145,15;5,6} -1 {45,27:6,6} -2 {27,45:6,6} —» {27,57; 7,6}
1, 197,69:8,6) L {69,27; 6,8} - {69,43; 7,8} —L {69,59; 8, 8}
T, 159,69; 8,8} L {59;85:9,8) L {59,101;10,8} L+ {101, 59;8,10}
1, 101, 79;9, 10} L5 {101,99; 10, 10} %> {99, 101; 10,10}
14 199,121; 11,100 L {121,99: 10,11} -5 {121,121; 11, 11},

where {r,s;m,n} denotes [§,5;m,n|. It is easily checked that [3,1;2,1](c) implies
(1211211, 11](0). ]

Claim 2.3. There is an array A € dBy(k3/%,kY/2;2,1) with property o.
Proof. Here we merely point the reader in the right direction. The details are not difficult.

We observe that each of the columns of such an array may be thought of as segments

of a sequence from dBy(k?;2), each segment having length £3/2. The de Bruijn graph (see
[1]) in this case has all singleton elements as vertices and all ordered pairs as directed edges.
In other words, it is the complete graph K} with every edge replaced by two directed edges,

one going each way, and with a loop added at each vertex. An Eulerian subgraph with &3/2
edges corresponds to a column of A, and a decomposition into kY2 such subgraphs then
produces A.

To guarantee property o, we need that each subgraph G; has ¥ jcy (g, jdeg;(j) =
0 mod k where deg;(j) is the number of edges entering vertex j in G;. We can accomplish
this easily if we ensure that, for every i, d;(k — j) = d;(j) for each 1 < j < k/2 and d;(k/2)
is even. This can be done in a myriad of ways; let the reader find his or her favorite. []

In [15] Ivanyi and Toth construct A € dBy(k2,k?;2,2) for even k. However, we can
show that property o holds (crucial to induction) only when 4 divides k. Also, although

there is an A € dBy,(k'/2,k/2;1,1) for even square k, it cannot have property o, crucial to

the induction process. Indeed the sum Zf;/(f_l i= <k12/2) = (#) (k'/2 — 1), which k does

not divide, and so some column sum is not divisible by k.

3. Proof of Lemma 2.2

Our function f is a generalization of the construction used in [4]. Of course, there are
more considerations in the k-ary case. Also, the reader will soon observe that f is really a



multivalued function. That is, f(A) depends on the choice of a (k™; n)g-de Bruijn cycle, and
we obtain a different array for each choice.

Let 0 be the sequence of k* 0’s, ¢ = cjca-- - cxn be any sequence in dBy(k™;n) which
begins with n 0’s, and ¢’ be ¢ with its first 0 removed. Finally, let ¢c; = --- = ¢ = ¢’ and
u = Ocicy---Cgs. Then u has length ¢t = k* + k(™ — 1) = k%™ and has the following
convenient property.

Let u = u1---us and u; = uj--Ujyn—1- Then for each 1 < ¢ < k* the set of n-
tuples {u;, W; ks, Wiyogs, -, Wiy (gn_1)ks } are distinct (index addition modulo ¢). This is so
because the starting points i, Ujtgs, ... , Uiy (kn_1)ks, are distinct with respect to c¢. That
I8, Uilljpks -+ Uiy (kn—1)ps = 0CjC 4 ps ==+ C;'+(kn—2)k3 for some j (indices of u are modulo ¢, of
¢’ are modulo k™ — 1), and since k° and k™ — 1 (the length of ¢’) are relatively prime, no
index of c¢ is repeated.

Next let A € dBy(k", k®; m,n) have rows ai, ... ,agr, and A’ be the (k" x k*T™) array
given by A repeated horizontally k" times and having rows af,...,a},. We now define
F = f(A) as the (k" xk*t") matrix having rows f1, ... , fir satisfying f; = u,fo = fi+a],f3 =
fo +a),... £ = frr_; + aj,_;. Notice that if A has property o then f; = fzr + aj,.
Furthermore,

K" k" K
S ofi=k"(u)+ > (K" —i)a; = — > iaj mod £,
i=1 i=1 i=1

so that if A has property o* then F' has property o.

To show that F' € dBy(k", k*t™;m + 1,n) we follow an argument similar to that of the
proof of fact 2.1a. Given a k-ary (m + 1) X n matrix B with rows By, ..., By41, define the
k-ary m x n matrix C to have rows C1, ... ,Cy, so that B; + C; = B;41 for 1 <47 < m. Then
C is found uniquely in A, periodically in A’.

Suppose C' is found in rows (j + 1) through (j +m) (addition mod £") and columns 3
through (i +n — 1) (addition modk®) of A. Let Ac be the j x n subarray of A consisting
of its first j rows restricted to columns ¢ through (i +n — 1) and let its column sum be
the vector ag of length n. Finally, let By = B; — a¢. Then By is a k-ary n-tuple, found
uniquely amongst W;, Wiygs, ... , Uiy (kn_1)ks, S8y Bo = Wj1aks. Thus B is found in rows
(7 +1) through (j +m + 1) and columns (i + ak?®) through (i + ak® +n — 1) of F, implying
F € dBy(k", k™ m + 1, n).

To show that F' has property 7, we observe that
fi=u+al+---+a}_,.

u consists of £° copies of ¢, so the sum of its digits is 0 mod £ if s > 1. If s < 1 then c has
sum (]2“) k™1 so u has sum k* (’2“) k™1, which is 0 mod k whether & is even or odd. As for

the sum of the digits of a’;, it is simply &™ times the sum of the digits of row a; of A, and so
F' does indeed have property 7.



To verify property 7* we must show that ngs+n - f; = 0 mod k, where n, = (1,2,... ).
Since nys+n - a5 = k™ (mps - @;) = 0 mod £ for all 4, we have

Ngs+n - fl = Ngs+n - U mod &
k° k"1
=) 1Y uipjpsmodk ifs>1 (%)
i=1 j=0
E* k"1

_Zzl gcj

(20

=0modkifs>1,n> 2, or k odd.

(by the “convenient property”)

For the last remaining case of k odd, n = 1, and s <1 (notice s > 1 in (%) above), one can
show that for c =0,1,... ,k — 1 we have ns+n - f; = 0 mod k. We need this last case in the
top line of Figure 2. L]

4. D € dBy(k* k% 2,3) with properties ¢ and o*.

It is interesting in its own right to consider the existence of what we call equivalence-
class de Bruijn cycles (and their higher-dimensional analogs). Let J;, be the all-1’s sequence
of length x and let u and v be two k-ary m-tuples. We say they are equivalent if v—u mod &
is a multiple of J,,. For example, (0142) and (3420) are equivalent with m = 4 and
k = 5. A cyclic sequence a is a k-ary equivalence-class de Bruijn cycle of order m, written
a € dBg(k™,m), if each equivalence class of k-ary m-tuples is represented exactly once as a
contiguous m-tuple of a. The existence of such an a follows immediately from the existence
of ¢ € dBy (k™ 1;m—1). Indeed, let ¢ = c; - - - cjm—-1 and define for any a1 € {0,1,... ,k—1},
a=aqj ---apm—1 by the relations ag = a;+cy, ... ,apm-1 = apm-1_;+cpm-1_;, addition being

m—1
modulo k. Of course, a1 = agm + cpm since Ele ¢; = 0 mod k&, and so equivalence-class de
Bruijn cycles do exist (see Figure 4).

00012 21 21
1 112 0 0 2 0 2
222011010

Figure 4. Each row is an element of dB3(33;3)
generated by 001102122 € dB3(32;2).

By choice of a; we can obtain & different cycles a. For 1 < i < k, let a(7) be that obtained

from a; = 4. If we define the (k™! x k) array A as having columns a(0)7,... ja(k — 1),

then clearly A € dBy(k™ !, k;m,1). For our purposes we have m = 3.



Given any sequence v = vy---v; let Vv = v 41---vv1---v; be its cyclic shift by i
digits. Let ¢ = c1---¢2 € dBg(k?2) and define the (k? x k?) array D; to have columns
a(c1)T,al(c)7, . .. ,aj(kz_l)(ckz)T, where 5 = 0,1,...,(k* — 1) and shift arithmetic is
carried out modulo k2. Finally define the (k2 X k4) array D by juxtaposing the arrays
DyDq ---Dy2_1. We now need to show that D € dBk(kz, k43, 2) and has properties 7 and
7* so that actually DT € dBy(k*, k%;2,3), having o and o*.

T
Suppose M is the k-ary 3 x2 matrix (mg s T ) . Then m11ma1m31 appears uniquely

in a(x1) and miamaoamsy appears uniquely in a(x2) for some x; and x2. Also, z1x2 appears
uniquely in c. Suppose a’l (x1) begins with miymaima;, a(xa) begins with miamaamss,
and z1,x9 are the ¢* and (t + 1) elements of c. If j = i9 — i1 then we find M in the {th
and (¢ + 1)* columns of Dj. Thus D € dBy(k?, k*;3,2).

To verify property 7 we consider only the first row of D, as the argument for other rows
is identical. Suppose the last row of D is didy---dgs. Then (with modk* subscripts for d
and modk? subscripts for a and ¢) we have

K —1k%—1

k’4
Yd= Y Y deinn
=1

h=0 i=0
K —1k%—1

= > > an(chtr)

h=0 i=0
K -1k%—1

=Y > apn(0) modk

h=0 i=0
(since a;p(cpt1) = ain(0) + cpy1) o

=2 2 > an(0)

glk?  hst =0
ged (hk*)=g

K /g

=Y > D gagj(0) mod k (1)

g|k2 h s.t. 1=1
ged (h.k*)=g

K /g
=2 9n(9) 2 a4(0)
glk? J=1
(where n(g) = the number of integers h s.t. gc%Q(/h, k2) = g)
g
= 96(k*/g9) 3 ag;(0)

(where ¢ is Euler’s totient function)



=0 mod k

since g¢(k%/g) = 0 mod k for all g|k2.

4
If we make similar calculations with Zle t1d; we discover that property 7* holds as well.
In fact, equation (1) becomes

K K /g
Yidi=d Y. hD gagj(0) mod k. (1)
i=1 glk?  hst, j=1
ged (h.k*)=g
But
> Y h=k*/2modk
|%2 h s.t.
ged (h,k?*)=g

since both h and (k2 — h) have ged g with k2 (remember that k is even). Thus, we find

k4
Z 1d; = 0 mod k.

1=1

[

One should observe that the analogous construction using A € dB (k™ !, k;m, 1) yields
D € dBy(k™ L, K™+, m, 2) with 7 and T*.

10



5. Remarks

Conjecture 5.1. If k,m,n,r, s satisfy
i) k" >m,
ii) k* > n, and
ili) r+s=mn
then there is an array A € dBy(k",k%; m,n).

We have already remarked on the necessity of the three conditions. The flexibility of
the function f, iterated and combined with transpositions in similar fashion to our induction
step, lends credence to this conjecture (as do constructions like dBy(k*, k2;2,3)), at least
for large values of m and n. Other functions like f would of course be of great use. The
techniques of Section 4 might also be of service here and in Question 2 below.

We can also define an (R, S;m,n);-de Bruijn torus A having dimensions R x S rather
than simply £" x k. When £k is a power of a prime p then the sidelengths must be powers of
p, but in other cases this need not be. Of course we need that R > m, S > n, and RS = k™",
and we are in no position to conjecture that these conditions are also sufficient, as they may
very well not be. However, we ask

Question 5.2. Does there exist an array A € dBpy(p™",¢"™"; m,n)?

Try (!) for example k£ = pg = 6. It seems we most definitely need a new f-type function
since we may not have property o to use f and we may not obtain property 7 once we do.

In d dimensions we can do the following. Let R = (k™,... k") and n = (nq,... ,ngq)
with £ > n; and Y r; = [In;. We call a d-dimensional toroidal k-ary block A an (R;n)-
de Bruijn d-torus if A has dimensions k™ X --- X k" and every k-ary ny X - -- X ng block B

appears exactly once contiguously in the d-dimensional torus, and write A € dB,Ccl(R; n).

The methods of Cock [3] can be used in d dimensions to obtain

Theorem 5.3. For all k,d, and n there is an R such that there is an (R;n)g-de Bruijn
d-torus, with the exception that n; = 2 for at most one index i when k is even.

Conjecture 5.4. If k,r1,...,rq,n1,... ,nq satisfy
i) k" >n; forall 1 < <d, and
i) ri+---+rg=n1---ng

then there is an A € dB{(R;n).

In particular, we believe this is true for ny = --- =ng=nand r; = --- = ry = n4/d;
i.e., de Bruijn “d-cubes.” In dimension 2 we saw that this required either n to be even or k a
perfect square when n is odd. More generally, if d = IIp}® we require either (IIp;)|n or k is a

perfect pgh power for all p; 1 n (for example d = 10, n = 8 and k£ = 32). We see in dimension 3
that our main difficulty again lies in finding other f-type functions. By using transpositions

2 2 2 2
in dimension 2 we were able to sequentially move from (%-, %) to (@, @) So far this

11



10.

3 3
5, 5). It should also be mentioned that we can ask these questions

R;), where each R; is not necessarily a power of k.

has not worked for (%3,
for general R = (Ry,. ..

Conjecture 5.5. d-dimensional equivalence-class tori exist. That is, for all k,d, and n
(except k = d = ny = ng = 2) there is an R and an A € dBy(R;n) such that every
equivalence class of k-ary (n1 X - -+ X ng) blocks is represented uniquely in A.

We mention this conjecture since the 2-dimensional case may very well help us find
“3-cubes.”
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