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1 Introduction

In this note we describe a representation of permuations of an n-element set that can
be viewed as equivalence classes of permuations of length n on n + 1 symbols. An
equivalence class universal cycle is a string 1o, . .., T, such that among the n! length
n substrings x;T;y1,...Tiin (subscript addition modulo n!) each equivalence class is
represented exactly once. We produce a complete family of n such cycles. In such a
family, distinct cycles use distinct representatives and each member of an equivalence
class acts as representative exactly once.

The notion of universal cycles as cyclic representations of combinatorial objects, as
a generalization of DeBruijn cycles, was introduced by Chung, Diaconis and Graham
[1] and studied by Hurlbert [2] and Jackson [3]. The universal cycles for permutations
that we examine here are one such example.

Let Hf,j denote the set of all k—permutations of {i,i+1,...,7}. We write a typical
element a € IT}; as a vector of k distinct terms from {i,i+1,...,;}. It is easy to show
that universal cycles exist for H’f’n for 1 <k <n—1 and do not exist for k£ = n. (See
Jackson [3].) Chung, Diconnis and Graham [1] use the concept of order isomorphism
as an equivalence relation on strings from I}, to get universal cycles for II7,. Such
cycles exist for m > 5/2n (Hurlbert [3]) and it is conjectured that m = n + 1 suffices.
We consider another natural equivalence relation on IIf , for which equivalence class
universal cycles representing II7 , exist. This gives a universal cycle for permuations of
length {1,2,...,n} using n+1 symbols. Moreover, we are able to construct a complete
family of such cycles.
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2 Equivalence Classes
Let 1,, = (1,1,...,1) denote the vector of m ones.
Definition 1 For a,b € IIf,
a~b<=a—-b=kl, (modn+1) forsomek.

It is easy to see that ~ is an equivalence relation and that there are n! equivalence
classes corresponding to the elements of II7,. An alternative perspective on these
permuations in terms of differences will prove to be useful.

Definition 2 For a = (a1, ay,...,a,) € 11§, let

d(a) = ((a2 — a1), (a3 — az), ..., (am — am-1)) € {1,2,..., n}m_1
where subtraction is modulo n + 1.

The following obvious lemma provides the connection to the equivalence relation.
Lemma 1 a ~ b < d(a) = d(b)

Lemma 2 a € IIf, if and only if d(a) = (di,dy, ... dy, 1) satisfies
J
> dp#0 (modn+1) for1<i<j<m-1.
k=i

Proof: The q; are distinct. O

In general we will say that a string z1, s, ..., Z,, of terms from {1,2,...,n} has
property P if all sums of consecutive terms (including a ‘sum’ of a single term) are
distinct modulo n + 1. That is, if Zi:i 2pZ0 (modn+1)forl1 <i<j<m-1

Denote by D, the set of elements of {1,2,...n}" ! satisfying property P. The one
to one correspondances from Lemmas 1 and 2 between permuatations of {1,2,...n}
(I?,), equivalence classes of n—permutations of {0,1,...n} and length n — 1 vectors
from {1,2,...,n} satisfying property P (D,,) will be frequently used in what follows.



3 Difference Representations

Having set up the equivalence class partitions, with permutaions as representations,
it is relatively straighforward to show the existance of universal cycles for D, using
standard techniques. We will need an additional property to ‘lift” universal cycles for
D, to a equivalence class universal cycles for II7 .

Construct the directed graph G,, with vertices corresponding to stringsin {1,2,...,n}"=2
satisfying property P and arcs corresponding to elements in D,,. The arc corresponding
tod = (dy,dy,...,d, 1) € D, goes from vertex
(dy,ds, ... ,d,_2) (the prefix of d) to the vertex (ds,ds,...,d,_1) (the suffix of d).

By P, the partial sums dg_1,dg_o+dg_1,...,do+ -+ +dg_1,dy +do + - - - dj_; are
distinct for any k. (If j <iand d;+---+dy_1 =d;+---+dg_1 thend; 1 +---+d; =0
(mod n+1).) Thus, given dy,ds, ..., dy satisfying P, there are n — k choices for dy; so
that di,ds, .. .dy satisfies P. In particular, there are 2 choices of d,_; for any prefix.
That is, the outdegree of each vertex is two. (By a symmetric argument each indegree
is two.) Note also that since there are |D,| = n! arcs, there are n!/2 vertices in G,,.

Figures 1 and 2 show D3 and D,. The vertices are labeled by difference pre-
fixes/suffixes and the arcs are labeled by the corresponding element of D, and, in
italics, the permutations in II7, with this difference sequence.

The following elementary lemma shows that G, is in general Eulerian.

Lemma 3 G, is strongly connected and every vertex of G, has indegree and outdegree
2.

Proof: The statement about the degrees follows from the discussion above.

Construct the directed graph H,, with vertices corresponding to permutations in
Hg;f and arcs corresponding to permutations in IIf . The arc a = (ay,az,-..,0a,) €
I, goes from vertex (a1, as,...,an-1) € Hg,;l to (ag,as,...,a,) € H&;l. It is easy
to see that the indegree and outdegree of each vertex is two. It is also not difficult to
show that H,, is strongly connected (see Jackson [3].) For completeness we include a
short, proof of this fact.

We show how to find a path between any two arcs in H, and thus since there
are no isolated vertices, H, is strongly connected. First note that there is a path
from arc x = (21, s, ...2,) to any cyclic permutation of x. Namely, (21, o, ..., Zys),
(T2, T3y -y Ty 1), =+ (Tis Tiz1, .-+, Ty T1,y---,Ti—1). Since any permutation can be
obtained from another by a sequence of transpositions of adjacent elements, it is
enough to show that there is a path from a = (ai,as,...a;0i41,...0,) to @ =
(a1,a9,...,0;-1,0;41, 0, Qiy2, - . .,0,). Let b be the element of {0,1,...,n} that does
not appear in a. Making use of paths P;, Py, P; for cyclic permutations, we have the



patha = (a1, as,...0;, 011, .-an), P, (G, @541,y Gy a1, ..o 0 1), (Gig1y - vy Gy Gy -

(@igy ey Opyry ..y @i 1,0,0;5), Poy (bya;, Givg ... y, a1, .., 0; 1), (Giy Gigoy ..., Gp,ar, ..

Py, (ay,aq,...,04,-1,0i41, 0, Qit2, .. .,a,) = a. For example, in Hy we have (1,2,3,4),
(2,3,4,1), (3,4,1,2), (4,1,2,0), (1,2,0,3), (2,0,3,1), (0,3,1,2), (3,1,2,4), (1,2,4,3).

Finally, we observe that the graph obtained from H,, by identifying vertices that
belong to the same equivalence class of Hg;ll is G, and thus G,, is strongly connected.
Identify vertices in H, corresponding to a,b € I, if d(a) = d(b). Each new vertex
arises from an equivalence class of n + 1 vertices and corresponds to a string of length
n—2 from {1,2,...,n} satisfying P. That is, it corresponds to a vertex of G,,. Similarly,
there is a correspondence between equivalence classes of arcs in IIf , of H,, and arcs of
G,. Tt is not difficult to check that with these correspondences G, is obtained from
Hn. In figure 3 we give the example of Hs. O

Lemma 4 Universal cycles for D, exist.

Proof: By Lemma 3, (G, is Eulerian. An Eulerian cycle produces the universal cycle.
O

For example, there is one Eulerian cycle in D5 starting with arc 11, namely 112332.
One Eulerian cycle in D, is 111242224344431213331342.

4 Universal Cycles for II7,

Finally, we need to ‘lift’ the universal cycles for D,, to equivalence class universal cycles
for II7 ,. Since we select a representative from each equivalence class, the cyclic repre-
sentation must return to the same representative of each class. It is this ‘lifting’ that
produces difficulties with the order isomorphic approach described in the introduction.
For a given a € {0,1,...,n} and a universal cycle ujus ... u, for D, we construct the
cycle v1vy ... v,y with u; = a and v; = v;_1 + u;_1 for ¢ = 2,3,...n!, with addition
modulo n + 1. For example, with the cycle 112332 for D3 we get

a=0 012032
a=1 123103
a=2 230210
a=3 301321

So for a = 0, the equivalence class representatives are 012 ~ 123, 120 ~ 231, 203 ~ 132,
032 ~ 321, 320 ~ 213 and 201 ~ 312.

-y i1, b)7
<y Q4-1, ai—i—l)a



With 111242224344431213331342 for D, we get

a=0 012304130421042301420143
a=1 123410241032103412031204
a=2 234021302143214023142310
a=3 340132413204320134203421
a=4  401243024310431240314032

Note that in both cases, every choice of a ‘lifts’ to an equivalence class universal
cycle. So in fact we get a family of such cycles, depending on the initial choice of a.

In general, v1v; . .. v, will be cyclic if and only if v; = vy + 1, (mod n+1). But,
this is the same as v; = v1 + Uy +ug + -~ up  (mod n + 1) since v; = v;_1 + u;_1. So
we need the following Lemma.

Lemma 5 Let ujus. .. uy be a universal cycle for D,,. Then Z;il u; =0 (mod n+1).

Proof: Let Dfl denote the set of strings dy,...,d,_1 € D, with d; = k. That is, those
strings with lead term k. For k € {1,2,...,n}, |[DE| = (n — 1)!. This follows from the
counts as in the description of G, or by symmetry (|DF| = |D7|).

Let d' = (d,d},...d! ) for i = 1,2,...n! be the list of the strings in D,, in some
order. Then since each u; is the first term of some string in D,, and conversely,

n! n! )
doui = Y df
i=1 j=1

n

= > |Di

= kil(n— 1)!
= W(n— 1)!
= 0 (modn+1).

O

Theorem 1 There exists a complete family of equivalence class universal cycles for
permutations of {1,2,...,n} using the symbols {0,1,2,...,n}.

Proof: Immediate from the above remarks and Lemmas 4 and 5. O



Observe that by using the matrix tree theorem, counts on the number of spanning
trees and hence the number of Eulerian paths in G,, can be obtained. (See for example
Tutte [4].) These methods would then give a count of the numbers of equivalence class
universal cycles for permutations. However, it appears that it may be difficult to obtain
a general expression for the evaluation of the determinant used in these counts. As is
the case with de bruijn cycles, it may be possible to use the structure of the graph G,
to obtain algorithms for generating universal cycles for permutations (and hence for
generating permutations).
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