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Abstract
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A discrete representation of an interval order (A, is an interval representation for which ecach interval
has integral endpoints. A representation s bounded if each interval 15 constrained with upper and lower
bBounds on its length, Given a fimite interval order and length bounds, we give a polynomial procedure
which determines whether or not it has a bounded discrete representation. The method uses Farkas
lernmia to reduce the problem to finding a shortest path or detecting a negative eycle in a corresponding
directed graph. Furthermore, we use this directed graph to state conditions necessary and sufficient for
a representation and examine suborders which block representation in the cases with constant lower
bounds of O or 1 and constanl upper bounds.

1. Introduction

Finite interval orders are partial orders which can be represented by “‘strictly
greater than™ on a set of closed real intervals. Interval orders arise in the study of
temporal events, comparison ol measured properties when measurement is subject
to error, in the study of preference orderings which give rise to intransitive
indifference, and in the modeling of just noticeable differences in psychophysics
{the study of the human perception of physical quantities such as length or sound).
See the books by Fishburn [4] and Roberts [11] for discussions of these applications
and reviews of related literature.

Study of interval orders as a model for temporal evenes began as early as Wiener
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[13] using the terminology “‘relations of complete sequence™. (See Fishburn and
Monjardet [7] for discussion of Wiener's early work on this subject.) Each temporal
event corresponds to some interval in time and event @ occurs before event b if a
ends before b begins. This is exactly the interval order model. Such a model can be
used, for instance, in chronological dating in archaeology and paleontology and in
production scheduling. In each application it seems reasonable to ask that the
lengths of the intervals be bounded and that the endpoints be limited to a discrete
set, providing motivation for the study of bounded discrete representations.

In this paper, we examine classes of interval orders where the intervals are
bounded and required to have integral endpoints.

Definition 1.1. Let (A4, ») be a finite interval order and &, f:.4 — M, nonnegative in-
teger constrainis. An [w, f] bounded discrete representation of (A, »)is a closed in-
terval representation J: A — {[l,r]: l,re £} so that J(i)=[{;,r;] with

(a) ixjef;=r; and

(b) e(iy=r;,— ;= f(i) for all i A,

We will use the nonbold notation [e, #] to indicate representations for which the
upper and lower bounds are constants ¢ and f,

It is also possible to define open (&, #) bounded discrete representations for which
the closed intervals J(i) = [/, r;] are replaced with open intervals J(i) = (/;, r;) and (a)
is replaced with

(a’) irjedi=r.

However, we will observe that these notions are essentially equivalent, and thus
will consider only closed bounded discrete representations.

The following gives notation for interval orders which have bounded discrete
representations.

Definition 1.2. Let (4, ») be a finite interval order. (4, >)e @[w, f] if and only if
{4, ) has an [, #] bounded discrete representation,

Fishburn [3; 4, Chapter 8] makes use of Farkas’ lemma to study bounded (non-
discrete) interval representations. In the nondiscrete case, by scaling, we may
assume that the intervals have lengths between 1 and g. Fishburn shows that the
family of minimal forbidden orders is finite if g is rational and infinite if g is irra-
tional. (He states axioms necessary and sufficient for representation and notes the
result about suborders as a comment.) A finite semiorder is an interval order with
a real representation in which all the intervals have the same length. Bogart and
Stellpflug [1,2] study bounded discrete representations of semiorders and give finite
lists of forbidden suborders in these cases.

Ken Bogart (personal communication) asked whether or not there is a polynomial
algorithm to determine if (4, >) is in @[e, f] given the order (4, ») and the bounds
[, fi]. In Section 3 we will give such a procedure. The procedure finds shortest paths
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or detects a negative cyele in a corresponding digraph DA, >, &, f). This procedure
also provides an alternative to the use of linear programming for determining if an
interval order has a (nondiscrete) bounded representation that is implied in Fishburn
[3]. In Section 4 we will study the digraphs INA, =, &, fi). The results from Section
4 will be used in Scction 5 to state necessary and sufficient conditions for member-
ship in @[e, #] and more succinet conditions for membership in & [, 0] (degenerate
intervals allowed) and %[, 1] (nondegenerate intervals) for given constants e, .
In order to more carefully examine forbidden orders, we make the following
definition for the family of minimal orders with no [e, §] representation.

Definition 1.3. Let (4, ») be a finite interval order. (A4, ») e #[a, ] if and only if
(4, ») has no [, /] bounded discrete representation and every proper suborder
(4", ») of (4, *) has an [«, §] bounded discrete representation, That s, (4, »)¢
e, A1 and (A, *) e Pe, F] for all A'CA.

Note that {4, »)& %[a, f] if and only if some suborder of (4, ») is isomorphic to
an order in #[e, #]. We will show in Section 5 that #[w, 0] is finite and that #[e, 1]
is infinite. We will also show in Section 5 that there are orders which are in both
Fla+1,1] and #[e, 1]. Such orders have no [ +1, 1] bounded discrete represen-
tation and every proper suborder has an [¢—1, 1] bounded discrete representation.

2. Preliminaries

Following Fishburn [4], we make the following formal definition of an interval
order. An interval order (4, ) is a set A, together with a binary relation > which
is irreflexive (not a¢>a for all @e A}, and satisfies (@>x and bry=ary or brx).
Alternatively, there is a map J from A to a set of closed intervals denoted J(i) =
[f:,ry] in some linearly ordered set (¥, =) such that

i>j e I>r

That is, the interval for § is strictly “greater than' the interval for j. When 4 is
countable, the linearly ordered set can be taken to be the reals under = . We will
consider finite A4 and real representations. Note that condition (a) in Definition 1.1
is consistent with the definition of an interval order.

We will use the derived relations indifference (i~jsnot { > j and not f > ), and
(i=jsizjor i~j). In terms of interval representations, ~ and = satisfy

i~j & L=rand [=r
and
izj # notjxi & r=l.

An (induced) suborder (A, >} of an order (4, ») has clements A"C 4 and > given
by the restriction of > o A"
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A chain x, x> >x, in (4, ») will be denoted x, >*~'x;. Here the superscript
far > indicates the number of » terms appearing in the chain. Similarly, an incom-
parability chain is a sequence x; — x;— - ~x; and is denoted x ~k=ly.. We also
use this notation for mixed chains. Thus x>™ ~™>" y would indicate a sequence
of relations from x to v with the first 7, symbols >, the next m, symbols ~, and
the last 7y symbols >. Elements appearing in the sequence need not be distinct.

Denote the vector (/. 4, ...,7,) by { and similarly for other variables with the
length n determined by the number of such variables. (We will not distinguish be-
tween row and column vectors as this will be clear by context.) Also let 1 denote
the vector with each entry 1 and similarly for other real numbers. Finally let (£, r)
denote the concatenation of the vectors I and r.

We will use Farkas' lemma in the following form (see e.g. Schrijver [12, p. 89]).

Lemma 2.1 (Farkas). Exactly one of the following holds, but not both
{a) there exists x such that xM=b,
(b) there exists ¢=0 such that Me=0 and c- b<0.

We will make use of the notation and terminology for digraphs (directed graphs)
found in Lawler [10].

Given a digraph D, a circulation is a set of nonnegative numbers (which we call
flows) assigned to the arcs such that, for each vertex v, the sum of the flows over
all arcs (w, v) “*entering”” v is equal to the sum of the flows over all arcs (v, w) “leav-
ing”” v. Let c(x,y) be the flow on arc (x,y). Then, a circulation  satisfies
¥ e(u,x) = ¥ oy, v) for all u, where the first sum is over all arcs (v, x) with v as the
tail and the second sum is over all arcs (¥, v) with v as the head. Thus, if the ordering
of the columns of the vertex-arc incidence matrix M is the same as the ordering of
the vector ¢ of flows, a circulation satisties Mc=10.

If lengths k are assigned to the arcs of a digraph D, the total flow in a circulation
¢ is the inner product ¢- k. A circulation has negative total flow if this inner product
is negative. If a digraph D admits a circulation with negative total flow, then it con-
tains a negative length cycle C. We will use the notation lengrh(S) to denote the
length of a cycle or path 5 in D,

A shortest path from x to y in a digraph D, with lengths on the arcs, is a path
P from x to y such that length(P) is less than or equal to the length of any other
path from x to y. If there are no negative length cycles in [, a shortest path contains
no repeated vertices. If there are negative cycles, D contains (nonsimple) paths with
arbitrarily small negative length (by including many traversals of a negative cycle).
Thus we consider shortest paths to be defined only if there are no negative cycles
in . We will also assume that paths contain no repeated vertices unless otherwise
noted, There are many well-known polynomial algorithms which will either find the
length of shortest paths between all pairs of vertices or determine that the digraph
contains a negative cycle. See Lawler [10] for more details.

Fix some root v and denote the length of a shortest path from v to w by s,,.
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Bellman's equations for shortest path lengths are 5,,=min 5, + length(x, w), where
the minimum is over all vertices x such that the arc (x, w) is in the digraph. In par-
ticular, Bellman’s equations imply that for a digraph D with no negative cycles, if
a vertex v is picked so that there is some path from v to every other vertex in D and
if 5 is a vector representing shortest path lengths from v, then s is well defined and
satisfies sM<k. Here, as above, M is the vertex-arc incidence matrix of D and &
is the vector of arc lengths.

Finally, we note the equivalence between open and closed bounded discrete inter-
val representations.

Remark 2.2. An interval order (4, ») has an open (a, ff) discrete representation if
and only if it has a closed [e—1, f—1] discrete representation. That is, there is an
open interval representation if and only if there is a closed interval representation
in which both upper and lower bounds are reduced by one. To see this, note that
if 1, r; are integers for all §, J'= {(}, r;) : i€ A} satisfies the condition f#j« f;=1r; for
an open interval representation if and only if J={[/,r—1]: ie.A} satisfies the con-
dition i>j f;>r; for a closed interval representation.

3. Bounded discrete representations

Clearly, (4, *) e @[a, #] if and only if the following integer linear programming
problem, which we will call ILP, has a solution.

vied —l+r=wl(i): interval length is at most a(i),
YieA {—r=-p(i): interval length is at least fi(/),
Winj —h+r=-1: J{) is greater than J{j),
Yi~j f—ri=0: J(i) is not greater than J{/),
Yied {,r; integer.

MNote that the final inequality applied to j—1i insures also that interval J(J) is not
greater than J(i), as is necessary for i—j. To see the third inequality, note that i>f
holds if and only if [;>r;. With the condition of integrality on the [; and r;, this is
equivalent to f=r+ 1.

Each row of the constraint matrix in ILP has exactly one —1 and one + 1 entry.
Thus, this matrix corresponds to the transpose of the vertex-arc incidence matrix of
a certain directed graph.

We define the directed graph D(A, », @, f) corresponding (o an interval order
(A, ») and bounds [w, ] as follows. Let D have vertex set LUR = {is e} VAR
ces 4} and arc set YU VU WUZ. The arc sets U, v, W, Z and the lengths on
these arcs are

U={(,r):i=1,...,]|Al} with lengths a(f),
V={(r,f):i=1,...,|A[} with lengths — By,
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W={(r;):i>j} with lengths —1,
Z={{rpl)i~j} with lengths 0.

When there is no chance of confusion, we will refer to D(A, > «, f) as D for
simplicity, For convenience, we use the same notation for variables in ILP as for
the vertices of D, There is a correspondence between constraint inequalities in [LP
and arcs of D, with lengths of the arcs corresponding to the right-hand side of the
inequality. There are four types of inequalities and corresponding arcs; we shall
refer to these as upper bounds on lengths (U}, lower bounds on lengths (V),
preference inequalities (W) and incomparability inequalities (Z). We will use the
variables u;, v, wy and z; to represent the dual variables corresponding to these in-
equalities. See Fig. 1 for an example of an interval representation of an interval
order and its corresponding digraph.

MNote that £7 is hipartite; there are no arcs joining two vertices of L or two vertices
of R. An arc from L to B must be in U7 or W and an arc from R to L must be in
Voor Z.

Construct the vertex-arc incidence matrix M for the digraph described above with
row j corresponding to /; if j=|A| and corresponding to r;_| 4 if = |A[. Also order
the columns so that they are partitioned with the arcs in LY appearing first, the arcs

1s I ' SO s
(b)

Fig. 1. (a) A representation of an interval order. (b) Its corresponding digraph D(A, >, &, F).
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in F second, the ares in W third and the arcs in Z last. Using this notation ILP
becomes

LryM=(a,—f#, -1,0), [, r integer, (1)

It is well known that vertex-arc incidence matrices are totally unimodular. Thus,
since the right-hand side of (1) is integral, if there is a feasible solution to (1), then
there is a feasible integral solution. So we can drop the integrality constraints. This
means that regular linear programming can be used to solve the bounded discrete
representation problem. However, making use of the digraph model provides a
more efficient procedure to determine discrete representations and provides infor-
mation on structures blocking such a representation.

Remark 3.1. We may use the ILP formulation with the cost function ¥ (r,—{) to
find a representation which minimizes the sums of the lengths. Other cost functions
can also be minimized wsing lincar programming (since total unimodularity insures
integrality)., However, by adding an extra element x to 4 such that x>/ for all re-
maining i & A, requiring that the interval for x has length 0, and using the shortest
path formulation which will be described in Corollary 3.3, we find a representation
which minimizes the distance between the largest and smallest point covered by
some interval without resorting to linear programming.

In order to find a more efficient procedure and to develop necessary and suflTi-
cient conditions for representability, we will apply Farkas' lemma to (1) to translate
the problem of finding a bounded discrete representation for (A, *) into the pro-
blem of finding shortest paths in 0. First note that Miu, v, w, ) =0 is the following
set of equations.

—u+v— ¥ wy+ ¥ z,=0 VieAd, (2)
3y T jrisj

u—v+ ¥ wi— ¥ z;=0 VieA. 3
d i i~

MNote also that if we view (i, s, w, 2) as the vector representing flows on arcs in U/,
V, W, Z, then (i, v, w, £) is a circulation and (2) represents flow conservation at ver-
tices §, and (3) represents flow conservation at vertices r;. Making use of these
observations we get the following,

Theorem 3.2, Let an interval order (A, ») and bounds [a, f] be given. (4, *)e
e, f1 if and only i’ the digraph D{A, >, o, f) contains no negative cyeles. Further-
more, i INA, »,a, B} contains no negative cycles, pick any vertex r, € D such that
v is maximal with respect to ». Then the lengths of shortest path from r, to vertices
{; (respectively r;) can be used as the left (respectively right) endpoinis in a represen-
tation,
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Proof. (A, »)e @[u, #] if and only if ILP has a solution. By the definition of
D(A, #,a, ), ILP has a solution if and only if (1) has a feasible solution. By total
unimodularity and the assumption that the vector (g, —ff, —1,0) has integral entries,
the integrality constraint on (1) can be dropped. That is, (1) without the integrality
constraints has a solution if and only if it has an integral solution. By Farkas’ lem-
ma, (1) without the integrality constraints has no solution if and only if there exists
a ¢=(u, v,w,2) =0 such that Mc=0 and c- (&, —f§, -1, <0. Such a ¢ represents a
circulation in D, by the constraint Mc=0. Note that ¢-(w —J,
—1,0y= Teling+ ¥ — B — L wyis the total flow of the circulation, so there ex-
istsac=0withec- (e, —f,—1,00<0, and Mc=0if and only if D admits a circulation
with negative total flow. If D admits a circulation with negative total flow, then it
contains a negative cycle. Clearly, if D contains a negative cycle, it admits a negative
circulation. So D admits a negative circulation if and only if it contains a negative
cycle. This proves the first part of the theorem.

Furthermore, if D contains no negative cycles, pick some v €4 which is maximal
with respect to ». Recall that this means that vz7 for all e A. Then for all ie A,
(f,r;)e D (if v>i) or (1, ) e D (if v~i). Also, (r,,],)e D). Thus there is a path in
D from r, to either the [ vertex or the r vertex corresponding to each element. Since
(t.,r;)e D and (r;,{;) € D for all , there is a path in D from r, to every other vertex.
Thus shortest paths from r, to every other vertex are defined. Letting [; (respective-
ly ;) be the length of a shortest path from r, to {; (respectively r;) vields an integral
feasible solution to (1), That this is integral follows from the integrality ofl the arc
lengths. The inequalities (1} hold since Bellman's equations for shortest paths
hold. O

Corollary 3.3. Let an interval order (A, >} and bounds [, ] be given. There is a
polynomial procedure to determine if (4, 7)€ gile, fi]. Moreover, the procedure
produces an [, ff] discrete representation if one exisis.

Proof. Construct the corresponding digraph (in polynomial time) and use any all
pairs shortest path algorithm on the digraph. If a negative cycle is detected, con-
clude that there is no representation. Otherwise, pick any vertex x such that the
shortest paths from x to every other vertex are finite, i.c., some path exists. Such
a vertex exists because, as noted in the proof of the theorem, this property holds
for vertices r, corresponding to maximal clements v in the interval order. Set
Jiiy=[s,, 5. ] where 5,, denotes the length of a shortest path from vertex x to vertex

w in the digraph. This is the [e, fi] discrete representation. O

We note that with some modifications to ILP, this procedure works to determine
representations when no integrality is expected, providing an alternative to a linear

programming computation in that case.

Remark 3.4. For nonintegral closed representations, the inequalities (W) for
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preference become —/+r=-—¢ for some small £>0. This follows since a
representation with /;>r; satisfies [j=zr+& for some £>0. A digraph for this
nonintegral case can then be constructed putting a length of —¢ on the arcs from
W and the algorithm in the corollary works.

By Remark 2.2, open interval representations can be transformed to closed
representations in the discrete case. However, simple modifications allow direct
solution in the open interval case and also allow mixes of closed, open and half open
intervals. For open intervals {/, ) the condition for representation is {>j« .",-:_*:'_.._
Thus for discrete open intervals, the third inequality in ILP becomes =Lt =0
for i#f and the fourth inequality becomes f,— ri= — L. Similar modifications can be
used if one interval is open and the other is closed.

At this point we have a polynomial algorithm to recognize if an interval order
(A4, »)e @ [o, f#]. This answers the original question posed by Bogart, However, the
digraphs DA, *, a, §) provide a good deal of information. We will continue to ex-
amine bounded discrete interval orders making use of these digraphs in order to ob-
tain necessary and sufficient conditions for membership in @[a, f]. More detailed
descriptions of the families of minimal orders % [&, 0] and 3 [e. 1] can be found in
Isaak [9].

4. Negalive cycles

In this section we examine negative cycles in the digraphs D(A, >, e, 0) and
A, » e, 1). We will show that if there is a negative cycle in D, then there is one
with certain minimal properties. We first prove a lemma about the relation between
elements ol A corresponding to vertices in paths in D that contain no length-u arcs
corresponding to the upper bounds (U}, This lemma will not require any assumption
of constant bounds. In fact, the lemma does not even require the assumption of in-
tegral endpoints.

Lemma 4.1, If P=u, ..., v is a path in INA, =, &, §) containing no arcs from U then
(@) u=land v=ri=i>j,
b)u=1land v=I[=izj,
(c} wu=r;and v=1I; or v=r;=izj.

Proof. The proof will make use of a general interval representation J on A so that
Jiiy=[I,F] and irjel=r. It 1s well known that such a real representation exists
if A is finite. We first show that the left endpoints of the intervals corresponding
to { vertices in P form a decreasing sequence moving along the path.

Consider any path P that begins with a vertex from L. Denote P by I, 1, Foizp Loz
Foiayr -+ Faizap fatzn+ 1)- Since there are no arcs from U, the ares ({24 - 1y, Moz} must
be in W, so a(2k—1)>a(2k). Thus, the right endpoint of the interval for o(2k) is
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less than the left endpoint of the interval for @(2k—1). That is, Py </lpae 1)
Also, the arc (rpopplsizeen) must be from ¥ or Z. If it is from V,
a(2k)=a(2k+1). If it is from Z, o(2k)~a(2k+1). In cither case, [ 3y, 1, =Fron
and thus a":,m,.]}{.ﬂrm i+ From this decreasing sequence, F,,“]afl;m}ﬂlz,,_n
which implies (b).

To show (a), note that (since there are no arcs from U) ({201 Foiam) € W, s0
o(2n—1)>a(2n) and o) <lyaey- As in the proof of (b), G, 1y <l 50 Fan<
fziy- Thus i=j and (a) holds.

Finally, for (c), consider P=r g, {501y s Fazp lans - The are (Fo lorry) 18
from V or Z. In either case a(0)~a(l), so F,Im,zﬂ,“]. From the proof of (h),
Foi1y > Tagan + 1y SO Fagy™> L2y + 1), Which yields (c) when v=1;. From the proof of (b),
‘;_cril:l::'ﬁﬂlrﬂ' SO Fainy > Faam = s Which yields (¢) when v=r;. O

Corollary 4.2, Every cvele in D{A, > o, f) must contain an are from U,

Proof. Assume that some cycle C contains no arc from U7 and reach a contradiction.
Since vertices of any cycle must alternate between r vertices and / vertices, C must
contain a vertex /,, from L. Breaking the cycle before this vertex, we denote C by
C=lgipPaty s P fagns np With (2n + 1) =a(1). Then (ryzm f5y) 15 an arc of
, so it is either from For Z. If it is from F, then a(2n)=a(1). If it is from Z,
then a(l)~a(2n). By part {a) of Lemma 4.1, o(l)>a(2n), a contradiction in both
CASEs.

The corollary shows that all cycles contain at least one arc from LF corresponding
to the upper bound. We will show that if there is a negative cycle in DA, =, o, 1),
there is one such thart the arcs all appear “*consecutively’ as a path alternating he-
tween £ arcs and U arcs. In the case that degenerate intervals are allowed, we have
the following.

Lemma 4.3, If D(A, >, &, 0) contains a negative cycle, then it contains a cyvele C of
length — 1 that has exgctly one arc from U,

Proof. Let C be a negative cycle with more than one arc from U or length less than
— 1. We show that C can be reduced to a negative cycle C’ such that C° has fewer
arcs from U or C' contains exactly one arc from U7 and has length — 1. When C
already has exactly one arc from L/, € must have length —1 and one arc from U
since reducing the number of arcs from & would in this case produce a negative cvcle
with no arcs from U, contradicting Corollary 4.2, Repeating the reduction yields the
result.

Partition the ¢vele into paths containing exactly one L/ arc, with that arc appear-
ing first in each path. Since C has negative length, one of these paths must have
negative length. Pick any such negative length path P=1_,, ro3, lo3pe --- in the par-
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tition. Note that ({5 Foi) € U and a(l) =a(2). For i=1, consider the sum of arcs
i
S“} = EI !Ié'ﬂgfh{xﬂh_ Ljs xa[h:} H‘l
h=

where x may be [ or r. Other than the first arc (fy o) with length @, the arcs
are from Z or V with length 0 or from W with length —1. So S{1)=w and for i=1,
S(H)=583-1) or S{HH=S(-1)-1. 5 becomes negative since P has negative length.
Thus for some 7, S(£)=0 and S(t+ 1)=—1 with (i Fais+ 1)) € W-. From Lemma 4.1
(©), ail)=aXza(t+1). If a(l)>alt+1) then ({5 Fop+ 1)) € W, In C, replace the
subpath L, Faqp -+ s Yoy 1y OF P With gy, 7511y 10 BEL 2 NEW cycle ©' with the
same length as C and one less arc from U. The lengths are the same since
S(t+1)=—1 and length(ly 1y T+ ) =1 Alternatively, if a(1)~a(f+1) then
(Foiea 1y log) €2 and C'=1l5 Faqzp - s Taip+ 1 I,y is a cycle in D. The length of C”
is S(f+ 1)=—1 since length(rgq .1y len) = 0. Then C'is a cycle with length — 1 and
exactly one are from U, [

In order to examine the case of [a, 1] representations, we make the following
definition for a sequence of arcs alternating between U arcs and Z arcs.

Definition 4.4. For k=1, a path P=1,1), Top - lagze—1p Taziy In DA, >, @, fis a
UZ-Path if o(2i—-1)=0a(2i) for i=1,..., k.

As a consequence of the definition, a UZ-Path must contain arcs (Laqzi-1p
razp) € U for i=1,... k. The arcs (Foip o+ n) for i=1,..., k=1 must be in Z,
since otherwise, if they are in V, g(2i)=a(2i+1) =ai{2(i+ 1)), and the vertex
T2y = Fagaii+ 1y) APpears twice, contradicting the definition of a path. Thus (ry),
Lipisi) € Z for i=1,..., k-1 and it follows that @(2i)~a(2i+1)=0(2(i+1)). The
definition allows trivial UZ-Paths consisting of exactly one arc from 5. We say that
a subpath of a cycle (path) is a maximal UZ-Path if it is a UZ-Path and it is not
included in a larger UZ-Path in the cycle {path).

In analogy to UZ-Paths, we introduce a path which alternates between arcs {rom
W and arcs rom V.

Definition 4.5. For k=1, a path P=I; i Tagp -2 lozk—10 Taizk) in D(A, > o f)isa
WV-Path if c(2i)=a(2i+1) for i=1,....,k-1.

As a consequence of the definition, a WV-Path must contain arcs Pz
lyaiip) €V for i=1,...,k—1. The arcs (Lyi2i— 1 Faiziy) for i=1, ..., k—1 must be in
W since otherwise, if they are in U, g(2i-)=e(2i)=a(2i+1), and the vertex
lo2i+ 1) = loq2i-1) appears twice, contradicting the definition of a path. Similarly,
Uoizk—1p Fop)) €W, since otherwise, if it is in L7, g(2(k—1))=a(2k—1) = g(2k) and
the Vertex ragag_1p= o) APPEArs twice, contradicting the definition of a path. So
fori=1,....k, g(2i-1)»o(2i)=0c(2i+1). By transitivity, the elements in the order
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corresponding to a WV-Path satisly a(1)>a(3)>--- >a(2k—1) and o(2k—-1)>a(2k).
As with UZ-Paths, we say that a subpath is a maximal WV-Path if it is not included
in a larger WV-Path,

We can now state a lemma regarding negative cycles in the case that only
nondegenerate intervals are allowed.

Lemma 4.6. If D(A, >, &, 1) contains a negative cycle, then it contains a cyvcle C of
length — 1 that has exactly one maximal UZ-Path, or « is odd and it contains a cyele
of length —2 with exactly one arc from U and exactly one maximal WV-Path.

Proof. Let C be a negative cycle. By Caorollary 4.2, C has at least one arc in U and
hence at least one UZ-Path (possibly a trivial one consisting of just this arc). Let
X be the property that a cycle has length —1 or —2 and has exactly one maximal
UZ-Path. We first show that there is a cycle satisfving property X. Let C be a
negative cycle. We shall show the following,

(a} If C contains more than one maximal UZ-Path, then € can be reduced to a
negative cycle C° with the property X or with fewer maximal UZ-Paths,

(b) If C contains exactly one maximal UZ-Path, but the length of C is not —1
or —2, then € can be reduced to a negative cycle C* with property X or with exactly
one maximal UZ-Path and one less arc from U,

By continuing with (a), we eventually get a cycle satisfying X or we get to a situa-
tion where we can use (b). By continuing with (b) from that point on, we eventually
get a cycle with property X. This follows since, by Corollary 4.2, the reduction can-
not produce a negative cyvcle containing no L' arcs.

We prove both (a) and (b) simultaneously. Thus, start with a negative cycle
satisfying the hypothesis of (a) or (b). Partition C into paths containing exactly one
maximal UZ-Path, with the maximal UZ-Path appearing first in the path. If C con-
tains exactly one maximal UZ-Path, then the partition consists of exactly one
“path’” which in this case is the cycle C with the arc from Z which precedes the max-
imal UZ-Path deleted. Since C has negative length, one path in the partition must
have negative length. Pick any such negative length path P=lnToap oy - 0
the partition. Denote the UZ-Path at the beginning of this path by Lyt ++ - s Poziy-
Note that o(2i)=a(2i-1) for i=1,..., k. As in equation (4) in the proof of Lemma
4.3, let 8(/) denote the sum of arc lengths up to the ith vertex. The arcs in the UZ-
Path are from U/ and Z and have lengths & and 0 respectively. So S(2k)=ak. Con-
sider =2k, that is, the part of P not containing the maximal UZ-Path. This part
of the path contains no positive arcs from U since such an arc alone defines a UZ-
Path. Thus, the arcs in the rest of P are from Z with length 0 and from V and W
with length —1. So, for i=2k, S(/)=5(—1) or 5(/)=5(—1)—1. 5§ becomes
negative since P has negative length. Thus for some 1>2k, S(f)=0and S(r+ 1)= — 1.
There are two cases, depending on whether the arc causing the sum to become
negative is from V or W

Case 11 (g Fie 1) € Wo In this case, a W arc causes the sum to become nega-



Bounded discrete representations of interval ordery 164

tive. 50 o(f)>a(f+ 1). There are three subcases depending on the relation between
ag(l) and a(s+1).

Subease (i): a(1)=a(i+1). In this case, replace Loitp -+ s Tapp+y In € with (g5,
Faie+ 1) € W to get a new cycle C' with the same length as €. This follows since the
arc ({ggp Fage+ 1p) has length — 1 and £y, ..., 1y 1y has length S(¢+1)= — 1. €’ has
one less maximal UZ-Path than C.

Subease (ii): a(l)~a(f+ 1), In this case (Fagr=1pdaqy) € £ with length 0. Then
C'=lop s Foir 1 10 doqy 18 @ cycle with length S(7+ 1)+ length(r,,, e larp)=—1+
0= —1 and exactly one maximal UZ-Path. So " has property X.

Subcase (iii): a(t+1)>a(1)=a(2). In this case, (!, 1y 7o)€ W. Also, by the
definition of D, (r s v lop+ )€ V. Lot C'=rgpm, Lot s Fait+ 1p datr+ 10 Foizy- NOte
that P’'=r 2, lo3p - s Fage 1y 15 @ subpath of P and thus is itself a path (contains no
repeated vertices). To show that C” is a cycle, we must show that [, |, does not
appear in P’. Note first that [, , |, is not part of the maximal UZ-Path in P since,
if this were the case, then r,, ., would also appear on the UZ-Path (by the defini-
tion of UZ-Path), contradicting ¢+ 1=2k. If {,, , appears on the part of P’ not
containing the maximal UZ-Path, sav as foug for 2k<w<r+1, then by Lemma
4.1{a) applied to Lpyp i Fappens olf+1)=ale) > gl +1), a contradiction. Thus,
Izt 4y does not appear on P’ and €’ is indeed a cycle.

C"is formed from the part of P up to a(s+1) with the first arc ({,,, ro) e U
deleted, shortening the path length by e, Also the two new arcs added to complete
the cycle each have length —1, so the total length of C'is S{(t+1)—a—2<0. C' con-
tains exactly one maximal UZ-Path. Thus, it has fewer maximal UZ-Paths than ¢,
unless C contained exactly one maximal UZ-Path; in the later case, C has exactly
one maximal UZ-Path and the maximal UZ-Path in C’ contains one less arc from U,

Case 2: (Fypplep o€ V. In this case, a V arc causes the sum to become nega-
tive. So a(f)=a(t+1). Denote by I, , and r,, the two vertices preceding / ), in
C. That is, the two arcs preceding (v frz) in C are (), ro) and (7,0 logy)-
Since Cis a cyele, r ) # rpm and a(0) = (1) (since (1) = a(2)). Thus, (o o) EZ
as it is not in V. If ({;_y, rogm) € US then £ _yy, Foion fogiy «++» Paziy I8 2 UZ-Path, con-
tradicting the maximality of the UZ-Path [y, ..., g2y S0 (g 1y Faiy) € W. Then
fength(l 1y Faop o) =0—1=—1.

Note that /,_;, and r,, are not equal to any of the vertices appearing on P'=
foitp oo bogr g 1y This follows immediately from the definition of a path if € con-
tains at least two maximal UZ-Paths (since no vertices are repeated in a path and
since the last vertex of P’ appears before the second maximal UZ-Path).

If C contains exactly one maximal UZ-Path, Pis € with one arc from Z deleted,
s0 length(P)=length(C). Now, in this case, I,y Foi appears as ,, Fog - in P
Thus, since length(l, 1y Moy logy) = =1, length(C)=length(P)=S(u)+1. C satis-
fies the hypothesis of (b) (when C contains exactly one maximal UZ-Path), so
fength(C)< -2 and thus S(w)<-3 and u+1>u>=¢+1. S0 I, y, and r,, are not
equal to any of the vertices appearing on P'=/{_ i, ..., in the case that C con-
tains exactly one maximal UZ-Path,
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There are three possibilities for the relation between o(—1) and &{f).

Subcase (1): o(—1) > o(#). In this case replace Iy, Ty loitp - s Feqny I C by
(Uai_tpFan) € W to form a new cycle C' with one less maximal UZ-Path. The
replaced path has length S(¢)+length(l ) Foiop loy)=0—1=—1. The new arc
(lzi-13 Forny) also has length —1, so the length of €’ is the same as the length of C.

Subcase (ii): a{=1)~a(f). In this case, (Faupli-n) 2. Let C'=;_ 1y Fop loqyy o
Foirp fag—1y- Note that € has exactly one maximal UZ-Path. The length of C’ is
length(ly ), aop logy) + S(0) + length(ry lp-)) =—1+0+0=-1. So C’ satisfies
property X.

Subcase (i) ot +1)=a(f)>a(-1). Since ({1 Fam) € W, a(—1}>a(0). By tran-
sitivity of >, o(t+1)>a(0) and (L, ) 7o))€ W. This arc has length —1 and
(Faop lary) has length 0. Let C'=r 5 logip -+ s Faip bagr+ 19 Toimy- Then C” has exactly
one maximal UZ-Path. The length of C' is length(rooplom)+ S0+ 1)+
length(zy 1 ro) =0-1-1=-2. So C’ satisfies property X.

This completes the proof that reductions (a) and (b) can be found, and thus that
there is a cycle satisfying property X.

Finally, we show that if C has exactly one maximal UZ-Path and length —2, then:
when o is given, C can be reduced to a C' such that C’ has exactly one maximal
UZ-Path and length —1; when & is odd, C can be reduced to a €' that has exactly
one maximal UZ-Path and length — 1, or C' contains exactly one arc from U, exact-
Iy one maximal WV-Path and has length -2,

Let the maximal UZ-Path contain y arcs from U and let C=Fy, P, [ (,y, with the
maximal UZ-Path Py =1 20 Fap-1p == fxzp Faiy 804 P =105 Fagay «+«» Fag CONtAIn-
ing no arcs from U. Note that for j=1,...,y, (lypuFe—n)€ U and for j=1,...,
y—1, {rrﬂjr 1) ".‘rli_.l F}Ez- Then ffﬂg{h{ﬂl}= ay. The arcs [r.ﬂl]! "um]' and {r.:un]! ":tzy}]’
joining P and F and £ to [z, are from Z and have length 0. Then, length(C)=
length(Py) + length(P) and since fength(C)= -2, we have length(P)= —ay-2.

The path P contains no arcs from U. If P contains an arc (7, Lo+ 1) € Z, then
l<w<w+1<uv by the definition of P. So P'={ . 1y o lotws 1 Fagw+z 18 in P
with (Lyw_ 13 Fapds Uagw s 19 Fapw + ;) € W (since there are no arcs from U in P). Then
length(Py==1+04+ -1=-2. By Lemma 4.1(a) applied to P’, a(w-1)>o(w+2)
and (lgp_1p Foqw+ n) € W with length —1. Replace P’ in C with /13 Foiw s+ 7 10 0b-
tain the cycle C'. The replaced path has length —2 and the new arc has length —1,
s0 C' has length —1. Also, clearly, C' contains exactly one maximal UZ-Path F,.

Thus, we may assume that £ contains no arcs from Z. Since P also contains no
arcs from U, it is a WV-Path. It is maximal since £, contains no arcs from W. 5o,
for ¢ odd [, appears in P and for ¢ even ry, appears in P, As in equation (4), let
5(7) denote the sum of the arcs along P, from a(l) to a(f). Since P is a WV-Path,
S(i)=—i+1 and since length(P)=—oy-2, v=ap+3.

Case 1: @ is even. When @ is even, note that r,, .z appears in P (since &+ 2 is
even and since v=ay+3). Let P'=1onraupleapy - Fawsze SiNCe (ponfam) €
U, m(2y=mn(1). Then since C is a cycle, m{l)=£a(l), and (rygplen)€Z with
length 0. Then, fength(P 1=+ Slo+2)=a+ —(x+2)+1=—1. By Lemma 4.1(c),
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applied to rogpdogp s Fowe e T2)=n(l)2ole +2). If 7(2)>ol(e+2), then (),
Foix+2) € W. Replace P in C by /2y Fgp+ 7 10 Obtain a cycle C’ with the same
length as C and one less arc from U. If n(2) ~ (e +2), then (g, 2 lny) € Z with
length 0 and C'= P', I3 is a cycle with exactly one arc from U (exactly one max-
imal UZ-Path) and length(C")=length(P")=—1. If C has exactly one arc¢ from U,
since C' must contain an arc from U by Corollary 4.2, the case m{2) »a{a + 2) cannot
hold and it must be that 7(2) ~a{c + 2).

Case 2: ¢ is odd. When « is odd, note that r; 5 appears in P (since e+ 3 is
even and since v=ay+3). Let P'=1Lo), Faqpdoqip -+ s Toga+ 3y Since (lyap Fry) € U,
m(2)=m(1). Then since C is a cycle, n(1)#a(1), and (ry) lo)) € Z with length 0.
Then, length(P')=a+S(e+3)=a+ —(a+3)+ 1= -2. By Lemma 4.1(c), applied
1O Fopip by -+ Paga+ 3» T2V =m(Dzo(a+3). If 7(2)>a(a+3), then (o Fomen) €
W. Replace £’ in C by loproeey 10 obtain a cycle C' with length(C') =
fength(C)+ 1= —1 and exactly one maximal UZ-Path. (The length is increased by
one since length(P')= -2 and length(l (2. My n)=—1.) If m(2)~o(a+3), then
(roia+ 30 fzizy) € £ with length 0 and C'=P’, [ 3, is a cycle with exactly one arc from
U/ (exactly one maximal UZ-Path), exactly one WV-Path and length(C"=
length(P=-2. [

We now note that negative cycles with exactly one maximal UZ-Path can be
decomposed into maximal UZ-Paths and maximal WY-Paths, with the connections
between these paths being arcs from Z. Consider any path P in D that contains no
arcs from U. Removing all Z arcs from P produces a disconnected collection of
paths alternating between arcs from W and arcs from V. Each of these subpaths (ex-
cept possibly the first) must start with an arc @ from W, since the arc preceding a
is from Z and thus has a vertex from L as its head. So the tail of ¢ must be in L.
Since @ is not in U/, it must then be in W. Similarly, each of these subpaths (except
possibly the last) must end in an arc ¢ from W, since the arc following o is from
Z and thus has a vertex from R as its tail. So the head of ¢ must be in R. Since a
is not in LV, it must then be in W. Thus each of the subpaths except possibly the first
and last is a WV-Path.

If C is a cycle containing exactly one maximal UZ-Path, the path P obtained by
removing this path can be decomposed as described in the preceding paragraph. It
is not difficult to see that the arc @ in C following the last arc of the maximal UZ-
Path and the arc & preceding the first arc of the maximal UZ-Path are from £ (since
otherwise the UZ-Path would not be a path). Since a is the arc preceding the first
arc of P and b is the arc following the last arc from P, in a manner similar to that
in the previous paragraph, the first and last arcs in 2 must be in W. Thus P can
be decomposed into WV-Paths and we have the following observation.

Remark 4.7. A cycle with exactly one maximal UZ-Path can be written as C=P,,
Py, ..., By where P, is the UZ-Path and for i=1,..., &, P is a WV-Path. The last
vertex of P, is connected to the first vertex of £;,, (mod k£ + 1) by an arc from Z.

— e —— e —————— e —— e —



172 G, Isaak
5. Necessary and sufficient conditions

In this section we study the negative cycles which, according to Theorem 3.2,
block discrete representations. We use these cveles to obtain necessary and sufficient
conditions for an order to be in @[, f]. We then translate the existence of the
negative cvcles in INA, >, a,0) and D(A, >, @, 1) described in Lemmas 4.3 and 4.6 in-
to a more compact set of conditions necessary and sufficient for membership in
e, 0] and P[e, 1]. We also show that #F[e, 0] is finite and that #[e, 1] is infinite.

A WV-Path /,y, ..., Fgapy in D corresponds to a chain a(1)>*a(2k) in (4, >).
This follows since there are & arcs from W corresponding to ». The & — 1 arcs from
V simply correspond to o(2i—1)=a(2i). Similarly, a UZ-Path Iy, ..., 50 cOr-
responds to a(1)~"""a(2k) since there are k— 1 arcs from Z corresponding to ~
and £ arcs from U corresponding to o(2i—1)=a(2{).

We now use the negative cyvcles described in Theorem 3.2 to give necessary and
sufficient conditions on the order.

Theorem 5.1. (A, »)e @[, f] if and only if
Bl LS U R L, =5 _-..->_]r. {5}

holds for all integral y;, n;, k=1 such that

k k
L i+ Bon=1)>( L ar)+a ©

i=1 =]

Proof. By Theorem 3.2, it is enough to show that XA, >, a, ) contains a negative
cycle if and only if one of the conditions (5) is violated for #,, ¥, & satislying (6).
These conditions are simply translations of the relations implied by a negative cvele
C in IXA, >, a, f) into chains of > and ~ in the order. In a manner similar to
Remark 4.7, a negative ¢ycle C can be decomposed as C=P,, Py, ..., P,, u where u
is the first vertex of P; and the P, are either UZ-Paths or WV-Paths. The last vertex
of P; is connected to the first vertex of P, by an arc from Z and the last vertex
of P, 15 connected to the first vertex of P; by an arc from Z. By Corollary 4.2, C
contains an arc from U and thus at least one of the paths, say P, is a UZ-Path.
Furthermore, we may assume that no two consecutive P and P, |, are UZ-Paths
since then P;, P, is itself a UZ-Path. The length of UZ-Paths is positive. Thus,
if C is negative, there must be at least one WV-Path. So, we may assume that P,
is a WV-Path, since if not, we can combine P, and P, into a larger UZ-Path. Let
u=1, be the first vertex of P, and r, be the last vertex of P,. Then (r,,/,)€ Z and
X~J.

The sequence of paths P,..., P, and the Z arcs joining the paths translate to
¥R'~R*~ - ~R"y where R'is ~*~'if P;is a UZ-Path with k arcs from U and R’
is »* if P, is a WV-Path with & arcs from W. R' consists of ~ terms and R" con-
sists of > terms by the choice of P, and P,. If R', i#1, consisis of ~ terms, com-
bine it with the ~ term preceding it and the ~ term following it. This can be done
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since no two consecutive P are UZ-Paths. Then, we can write xR' ~R*~--. ~R"y
with ~ and » terms alternating. Thus, if C is negative, corresponding to

P, P, ..., P, is the chain
RN [ X [PURC DY N AN Y

in D. Here >" corresponds to a WV-Path with #; arcs from W and y,—1 arcs from
. So the length of this path is —g,—#(#,—1). The ~"" term is ~n=1_ where the
~"~1 corresponds to the first UZ-Path with v, arcs from U followed by the —
term for the first Z arc linking £, to P;. This subpath has length ay,. For j#1, the
term ~” corresponds to a Z arc linking two WV-Paths if y;=1. If y,> 1, the term
is ~=""2— _[In this case, the first and last — correspond to the linking £ arcs and
~"~% corresponds to a UZ-Path with y—1 arcs from U and y;-2 arcs from Z.
Such a subpath has length a(y—1).
Summing the lengths for the P, noted above, we get

& k
— ¥ m+Bn—1n+ (JEZ ey 1}) +ay
=1 [

& &
- _EI (:+ Blp—1+ (_EI a{y,-—l:l)m, N
i= fi= y
If (4, >)g P[a, f], then there is a cycle C of negative length. It follows that
Py, ..., P, has negative length, so
& .k
- T B+ L a1 1) +a<o,
o Wi

and () holds. However, since P, is joined to P by a Z arc, we have y — x. Thus (5)
fails.

Conversely, suppose that (6) holds but (5) fails for a sequence of relations. If (5)
fails with y~x, then x—7"3>"... ~¥3My~x gives a closed directed path whose
length is given in equation (7). By (6}, this length is less than zero. A negative closed
directed path contains a negative cycle, thus, (4, ») ¢ @[e, §]. If (5) fails with y > x,
then (/,,r .)€ W. This arc is in D and has length —1. Let F; be the paths defined
from x="1 "~ Y% p g5 gbove and P=P,,..., P, as above. Then (7) gives the
length of P and by (6), this length is negative. Also, let P be Py with the first arc
(I, r.), having length &, removed. So Py starts with vertex r.. Then length(P/)<
length(P)). Recall that r, is the last vertex in P,. Then C’'=PFj,..., P, /[, r, has
negative length because P=P,, ..., P, has negative length and length(P))<
length(P,) and length(l,,r,)=—1. Either C’ is a negative cycle or it contains a
negative cycle (if the new vertex /, also appears eatlier in C). In either case, D con-
tains a negative cvele and (4, ») ¢ @[a, 1. [

The conditions in the previous theorem are not independent. In the cases that the
lower bounds are 0 or 1, we can use the structure of the negative cycles in Lemmas
4.3 and 4.6 to state more concise conditions.
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Theorem 5.2. (A, ») & @[e, 0] if and only if
¥ L L LR PR = X:,,}. {S:I

holds for all integral n;=1, such that

i
Y op=a+l (9)

i=1

Proof. By Theorem 3.2, it is enough to show that D(4, >, &,0) contains a negative
cycle if and only if one of the conditions is violated. Suppose that there is a negative
cycle €. We translate the relations implied by a negative cycle C=1, 1y, P, !, of the
type described in Lemma 4.3 into chains in the order. C contains one arc ([, ry)
from L/ connected by an arc from £ to a sequence P of WY-Paths each also joined
by an arc from Z. If y is the element corresponding to the last vertex ry in P, then
= ¥~ B %™y holds in the order. Here, the #, indicate the number of arcs
from W in the WV-Paths. The WV-Paths are nonempty, so n;=1 for all i, The
only arcs with nonzero length in C are those from W with length —1 and the one
arc from U with length ¢. From Lemma 4.3 the cycle has length —1 and so there
are ¢+ 1 ares from W. Thus, Ef_, n;=a+1 and (9) holds. Completing the negative
cycle C is an arc (r, /) € Z. This corresponds to x~ ¥, violating (8).

Conversely, assume that (9) holds but {8) fails for some sequence of relations. By
the correspondence between x~ >™---~ >y and the path /., r,, P in C (this can be
shown to be a path by Lemma 4.1}, if (9) holds and (8) fails with ¥ > x, we reach
a contradiction. The contradiction is reached because by Lemma 4.1(c) applied to
r,, P yields x= y (since r, is the last vertex in P). Thus it must be that (8) fails with
x~y. Then D contains a negative cycle 1\ F Py I This is a cycle since x — ¥ im-
plies that (r.l)eZ. U

Theorem 5.3. For

P BBy = XPY (10)

and
&

S (2n—1) =ya+l, (11)
=1

=

we have the following.

(a) When a is even: (A, >) € @[a, 1] if and only if (10} holds for all integral m;=1,
y=1 satisfving (11).

(b) When a is odd: (A, ») € Dle, 1] if and only if (10) holds for all integral n;=1,
p=1 satisfving (11) and

X (o 3]-.*2}J g x}}, (12)
holds.

Proof. By Theorem 3.2, it is enough to show that D(A4, »,a,1) contains a negative
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cycle if and only if one of the conditions is violated. Suppose there is a negative
cycle. We show that if e is even, (10) fails for some integral #;=1, y=1 satislying
{11}, and if & is odd (10) fails for some integral #,=1, y=1 satisfying {11) or (12)
fails. We translate the relations implied by a negative cycle of the type described in
Lemma 4.6 into chains in the order. Such a negative cycle contains one maximal UZ-
Path connected by an arc {rom Z to a sequence of maximal WV-Paths each also
joined by an arc from Z. Denote this by C=F,, P, /, where F is the UZ-Path, P is
a sequence of WV-Paths joined by arcs from Z, and [, is the first vertex of . Let
» denote the element corresponding to the last vertex 7, in P. Then x~""'~ >~
#M..— »"y holds in the order. Here, the #; indicate the number of arcs from W
in the WV-Paths and y indicates the number of arcs from L' in the UZ-Path.

The WV-Paths are nonempty, so 5;=1 for all i. A WV-Path with #; arcs from
W has i, —1 arcs from V. Both of these arcs have length —1 in IMA, », &,1), s0 the
WV-Paths have length 1 —2#;. The UV-Path has length oy since each U arc has
length ¢ and the arcs from Z have length 0. So

4
length(CY=ay+ Y (1 -2n,). (13}
i=1

From Lemma 4.6, the cycle has length —1 or =2, If lengih{C)=—1 then, from {13),
(11) holds. Completing the negative cycle C is an arc (r,,/,) € Z. This corresponds
to x~1, violating (10). In the case that length{(C)=-2, by Lemma 4.6, « is odd,
(" has exactly one arc from U and exactly one maximal WV-Path. So y=1and k=1
and x~ »"y holds in the order. Also, (13) with y=4k=1 and length(C)= -2 gives
= (+3)/2. Then since x~y (as arc (r,, /)€ Z), (12) is violated.

Conversely, suppose that when ¢ is even, {10) fails for some integral ;=1, y=1
satisfving (11), or if « is odd (10) fails for some integral #;=1, p=1 satisfving (11)
or (12) fails. We show that D{A, >, ¢, 1) contains a negative cycle. By the corre-
spondence between x~7 =%~ > — Sy and Py, P as described above, il a con-
dition (100 is violated or if (12) is violated with x -y, then {J contains a negative
closed path, and hence a negative cycle. The closed path can be formed since x~y
implies that (r,, /.)€ Z. The negativity follows from (11) or from #,=(a+3)/2. In
the case that (10) or (12) is violated with ¥ > x, we proceed as in the proof of Theo-

l | | I |
| f 11 E'Il_d |
| | l | L ]
Igl I o | [ bl
| |
I |
L

Fig. 2. An order with a duplicated element in a negative cycle.
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rem 5.1. If y »x, then ({,r,) € W. Let P be P, with the first arc (/,, r,) removed.
Then length(Py) < length(Py) and C'=Fy, P,I,, r, has negative length. Either C’ is
itself a negative cyele or it contains a negative cycle. In either case, D contains a
negative cycle.

In both of the previous theorems, the elements ol A appearing in the condition
x=»M .. %y are not necessarily distinct. For example, the order shown in Fig. 2
contains g~h re~dre > f—crg with ¢~g. Thus g~ >~ »2~>g=a>gis vio-
lated. Since (9) holds for @ =3, the order has no [3,0] representation. The element
¢ appears twice in the chain, corresponding to appearances as r. and /. in a negative
cvele in the digraph. It can be checked that there is no condition (8) satisfying (9)
{with @=23) which is violated that does not contain a repeated element.

In the case that degenerate intervals are allowed {§=0), there are a finite number
of conditions (8) which must be satisfied for each « since the n; in (9) satisfy 1=
m.=e+1 and also & is at most e+ 1. It is not immediate that these conditions are
independent. However, a more detailed description of the orders (4, *) e #F[e, 0]
given in Isaak [9] do imply that the set of conditions (8) satisfying (9) in
Theorem 5.2 are independent. That is, for a given & and for each condition ¢ defin-
ed by (8) and (9), there is an order which violates ¢ but satisfies every other condition
defined by (8) and (9).

In the case that only nondegenerate intervals are allowed (f=1), for each y and
¢ there are a finite number of conditions {10) as & is bounded by ay+1 in (11).
However, for lxed e, the entire family of conditions described by (10) and (11) (and
{12)) is infinite since ¥ may be any positive integer. The conditions in Theorem 5.3
are not independent. For example it can be shown that if (10) is violated for some
#, =2 and k=1 satisfying (11} then a condition (10) satisfying (11) is violated
with y=1 and &=1 or (12) is violated. This is shown by a reduction of the corre-
sponding cveles in the digraph. However, Theorem 5.5 shows that an infinite set of
independent conditions is necessary to describe membership in @[w, 1],

We now state results concerning the cardinality of the minimal families.

Theorem 5.4. For a given a=0, F[a,0] is finite.

Proof. If (A, »)e#[e, 0] then (4, >) has no [e, 0] discrete representation. By Theo-
rem 3.2, there is a subset of elements of A which violate (8) and satysfy (9) for some
k and #;. Also, as (A, ») is minimal, each element of A must appear in the violated
condition (8). Thus, the number of elements in A is bounded by 1 + Ef_l (m,+1)=
@+ k+2, the number of elements appearing in a chain of the type in (8). Since
EL[ m;=e+1 and the ; are greater than or equal to one, & must satisfy 1=k=
e+ 1. Thus, every order (A, ») in F[e, 0] satisfies 4| =a+k+2=<2p+3. For a
given e, there is a finite number of orders with at most 2e + 3 elements. So #[e, 0]
must be finite. [l
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For discrete representations in which the lower bound on interval length is one,
the situation is quite different. There is no finite list of forbidden suborders to an
[, 1] discrete representation. We give a simple example to prove this.

Theorem 5.5. For ¢=2, F|o, 1] is infinite.

Proof. For even o, construct an infinite family of minimal forbidden orders, A
similar, slightly more complex construction, can be used lor odd . We will omit
the construction for odd . Details can be found in Isaak [9].

For « even, and any y=3, we will construct an order (A%, *) on (&/2)+4+y
elements using an interval representation for which every interval except one has
length between | and . The exceptional interval has length o+ 1. We then show that
the corresponding digraph D{A™Y, >, w,1) contains a negative cycle, so there can be
no [, 1] discrete representation. Finally we show that (47, ») is minimal by shift-
ing the intervals to produce an [e, 1] discrete representation for any suborder ob-
tained by removing one element from A%,

Let A™Y={ay,as, a3, a4} U {ay, ..., g2y 410 Y {Py ..., B,}. Let an interval repre-
sentation be given as follows,

J(a)) = [0,1],

J(a) = [2,4],

Jla) = [20e 2D p+ 1) =3, 2((a/ )y + 1) =11,
Ja)) = 20(e/2) p+ 1), 2((e/2)y + 1) + 1],

j{al} = []1'2']!
Jlay) = [3.4],

Jia;) = [2i—1,2{],

Ky +1) = [20(@/2)y +1) - 1, 2{(a/2) y + 1)1,

J(by) = [l e+2],
J(by) = la+2,2a +2],
J(b) = 2a+2,3a+2],

Sy ==y + 2, dr + 2],

J(b,) = [(y—Da+2,ya+2].

Mote that J(#) is the only interval with length greater than e, The intervals J(B;)
for i#1 can be shifted one unit to the left (i.e., J{b)=[(i— e + 1, i + 1]) without
changing the intersection relationship with the J{(g;) intervals and the intervals
Sy, Has) and J{ay). Similarly, the J{gz;) intervals can be shifted one unit right
without changing the intersection relationship with the J(&,) intervals. See Fig. 3
for a schematic representation of (A™7, »). Note that when ¢ =2, the intervals for
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J(b,_,) and J{ay) and for J(by) and J{a3) should also gverlap in this figure.
It is not difficult to check that the following are paths in D{A™ Yoo, 1)
'P]' = ;f.'ﬁ‘ 'rnl.h‘ !f,lz’ rn'.?:‘ Sy ‘rﬁ'.‘ rfp‘, L]
Pl= .Irh.;,.l"ﬂ;,

P3= !I"?'iu p+1? rﬂn-r-:|;-’ !I?:u ur? rﬂ-..-.-:r.-- ” ‘r'-' = ‘r”:‘ !4'-‘!" JI.'-"I :

P4 = ;ﬂﬁ‘ L Elhl.

It I L

Additionally €=P1,P2,P3,P4 is a cycle with the links between each pair of
paths having length 0. We also have length(P1)=wy, length(P2)=—1, length(P3) =
—(ay—1)=—ay+], and fength(P4)=-1. 50 the total length of the cycle is —1.
Thus, by Theorem 3.2, (A%7, *) ¢ e, 1].

To show that (A%, >) is minimal, i.e., that each proper suborder of (AT, ») is
in @[e,1], we construct an [er,1] representation for each suborder obtained by
deleting one element from (A™ ¥ ). If b, is removed, the above representation suf-
fices. If some other element is removed, we shift the intervals for some of the
elements in order to shorten the interval for by without changing any of the rela-
tions. We give the shifts below; in each case it is not difficult to check that no
overlaps of intervals are created or destroyed.

(i) Remove b; for some 1< j=y: shrink J(#,) and for i< j shift J(b,) one unit
to the left;
J(b) = Wi— Ve+1,ie+1] for l<i<j and J(b)=I[lLa+ 11.

(ii) Remove a; for some 3= j=(a/2)y—1 (note that if =2 and y =3 there is
no such ;): shrink J(fy) and J{a3) and shift J(a) and J{a;) for i< jone umnit to the
right;

J(a))=11,2] and Jiay) = [3.4],

Jay =24, 2i+1] for 1=i<j and Jib) =[2,2+12].

a%’f-l a%? a%zzf—.

SE - HH

ol
Al
T

Fig. 3. (A™F »).
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(iii) Remove a): shrink J(h));
Jb) =2, +2].

(iv) Remove a3 shrink J{b,) and shift @) to the right;
J@)=1[1,2] and J(b)=[2a+2].

{(v) Remove ay: shrink J(b,), move J{k;) one unit to the left for i=2, ey ¥ and
maove J(ay) one unit to the left;

Ho)=[li-Dea+Lig+1] fori=2,...,y and J(b)=[lLa+l],

J@) = {z(f}w |)-1,2(5}r+ |ﬂ
2 2
(vi} Remove ay shrink J{b,), and move J(&;) one unit to the left for i=2, ..., y;

Hb)=li—-Da+1ie+1] fori=2,...,» and J(b)=[1,a+1].

(vii) Remove a,: shrink J(h;} and J{a1) and shift J(a]) to the right;
Ja)=[1,2] and Ha)=[3,4] and J(b)=[2a+2].

(viii) Remove a,: shrink J(b)) and Jf(&3), and move J(a|) and J(a,) to the right:
Ja)=[1,2] and J(@)=[34] and J(a))=[23] and J(b)=[2,a+2].

(ix} Remove a2 shrink J(h,) and J(a3), move J (#;) one unit to the left for
i=2,...,y, and move J(a}) and J(ay,,.,) one unit to the left;

S =li-1)a+Lie+1] fori=2,...,y and Ab)=[1l,a+1],

Jlay) = {2(%}% 1) —3,2(%}4 I)—Ew and

Hag)= {2(%3% 1)—],2(§y+ I)J,
Hepmcd= [2(% ; 1)-2,2(%;u+ |) - 1]

(x) Remove a5, : shrink J(b,) and J(a}), move J(b;) one unit to the left
for i=2,...,y, and move J{a)) one unit to the left;

Jhy=Mi-1yr+ 1l ie+1] fori=2,...,y and Jib)=[lLea+l],

Jig)= lz(_%w 1)-3,2(—‘; ¥4 |)—z] i

Jm;1=‘z(jﬂl)—l,z(g}rﬂﬂ. O

Y
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Finally, we construct a special class of interval orders based on the violated condi-
tion (12) of Theorem 5.3,

Definition 5.6, Given ¢ odd o= 3, the bi-minimal order (A, ») with respect to o is
such that the elements can be labeled A ={a,a),.... 4,5~} with > given by
@ 7@ 7 Py, 5y (and the relations implied by transitivity in this chain) and for
i=1,...,(e+5)2, ay~a;.

Thus, the bi-minimal order with respect to ¢ consisis of a chain of (o + 3)/2
elements and a single element which is ~ to every element in the chain. The bi-
minimal order with respect to « has no [e+ 1, 1] discrete representation, but every
proper suborder has an [e, 1] representation.

Theorem 5.7. Given «=3, the bi-minimal order (A, *) with respect to « satisfies
A, =V eFla+1,1] and (A, =) e Fe, 1].

Proof. Let = (i + 5)/2 and let the elements of the bi-minimal order (4, *) be label-
ed as in Definition 5.6. It can be checked that C=1/,, ro. dy Faps lap - s o la s Fa
{;, is a cycle in D(A, >, e+ 1,1) with length —1. (The cycle contains one arc from
U/, two arcs from Z, and a WV-Path with {—1 arcs from W and {-2 arcs from V.)
So (A, g P[e+1,1] (and thus (4, *) ¢ D, 1]).

The proof will be completed by showing that for all ee A, (A% {a}, »)e @[e 1]
fand thus (4% {a}, *)e @la+1,1]).

Consider A\ {a,}. The set of intervals with length 1 given by J(a;) =[a +4-2i,
o+ 5-2i] for i=1,...,(e+5)/2 can easily be seen to represent (4% {ay}. #).

Consider A\ {a;} for a given je{1,...,(z+5)/2}. The set of intervals given by
Jag) = [0, ] and

ronen a+2-2ha+3-2i], ifi<j,
‘ Jor + 421, o 4 52§, if i>j,

can easily be seen to represent (4 \ {a;}, >). [l

Mote that it is not difficult to construct an [¢+ 2, 1] discrete representation for the
bi-minimal order (A4, ») with respeet to e by using the representation given in the
proof for the case A% {a,} along with the interval J{a,)=[0, & +2]. S0 (4, ») has
the property that it has an [& + 2, 1] discrete representation, but no [e+1,1] discrete
representation, and every proper suborder has an [e, 1] discrete representation. So,
by removing a single element, the length of the longest required interval is reduced
by 2.
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6. Conclusion

We may also consider bounded discrete representations of interval graphs. An in-
tervad graph G is a co-comparability graph of an interval order. That is, {u, w} is
an edge in G if and only if v~ w in the order. Alternatively, an interval graph has
an interval representation in which {v,w}lis an edge il and only if the corresponding
intervals overlap. In general, there may be several different interval orders for which
a given interval graph is the co-comparability graph. As with interval orders, we will
say that an [a, #] representation has intervals with lengths bounded by the vectors
@ and f. The representation is discrete if the endpoints are integers. Fishburn [4,
Chapter 8; or 5] sketches a proof that an interval graph & has an [er, 5] (nondiscrete,
constant bounds) bounded representation if and only if every interval for which G
is & co-comparability graph has such a representation. The same proof works for
bounded discrete representations. Simply note that the transformations of given
representations from one agreeing order to another can be done preserving integrali-
ty. In fact the proof works il variable upper bounds & are allowed.

With variable lower bounds, the comments in the preceding paragraph do not
hold. Consider the interval graph G shown in Fig. 4(a). The discrete interval graph
representation shown in Fig, 4(b) satisfies 1 = |J(a)| <3, 2= ) =3, 1= |J()| =3,
and 1= |J(d}| =3. Here | (/)| indicates the length of interval J(). The interval order
shown in Fig. 4(c) (via its Hasse digram) has Gasa co-comparability graph and also
has the same representation satisfying the same bounds, However, the interval order
shown in Fig. 4(d), which also has (G as a co-comparability graph, has no representa-

b

2k ol |‘_|_Ll|'—|
d 1 H

(a) (b)

b c
c  .a b .a
d d

() (d)

Fig. 4. (a) An interval graph. {b) A discrete interval graph representation. (¢) and (d) Two agresing
orders,

—— e
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tion satisfying the bounds stated above. In this case, if the intervals for ¢ and d both
intersect the interval for a, there are at most two integers between the left endpoint
of ¢ and the right endpoint d. Then the interval for b, which must fall between these
endpoints can have length at most 1, violating the lower bound for b. Thus, the
algorithmic result which we have given for interval order representations does not
carry over in general to interval graphs. It would be interesting to find an algorithm
for determining if an interval graph has an [e, §] discrete representation given the
nonconstant bounds e, f.

Fishburn and Graham [6] examine graphs which have [, 1] (nondiscrete) repre-
sentations, and for rational @, families of minimal graphs with no [e, 1] repre-
sentation, but an [e, 1] representation for e’ = . They obtain general bounds on the
size of these minimal families and exact counts in certain special cases.

We may use the negative cycles in the corresponding digraph in the nondiscrete
case to remove one of the conditions in Fishburn's theorem [3] stating necessary and
sufficient conditions in the case of nondiscrete bounded orders. Fishburn notes that,
in the nondiscrete case, by scaling, we may assume that the bounds are relatively
prime integers. His theorem states that an interval order has representation with in-
terval lengths bounded between relatively prime positive integers p and g (p= g) if
and only if

x}:l__tfl,..}.*;ll,.._gn ¥y o= _1'>'_V
and
x~frpbn bl y o xby

for n=Tivii Py Gl bpt =22 s 1 Bry =g +n, and T, S=p+h-1.

We can show that only one of the implications in the statement of this theorem
is needed. Construct a digraph D using the nondiscrete conditions as described in
Remark 3.4, The implications i S i b po x>y together with ¥~ x corre-
spond to a negative cycle in D, If the implications are violated, there is such a
negative cvcle. Breaking the cyele with an arc (r,,/,) € Z such that the next arc in
the eyele is ({, r,) € U (such an arc exists by Corollary 4.2) produces a set of im-
plications x ~ %" »%... = &8 y= x>y which are violated. The converse is shown in a
similar manner, noting that any negative cycle must contain an arc from 2 followed
by an arc from W {where we break the cycle), since otherwise the cycle contains only
arcs from U and ¥ and is positive.

We have given an algorithm to determine if an interval order (4, ) has an [ex, 1]
bounded discrete representation for general bounds. We have also given necessary
and sufficient conditions for representability when the bounds are constant. We
have more succinct conditions for the cases that the lower bound is the constant 0
and the constant 1. It would be interesting to examine similar succinet conditions
when the constant lower bound is f=2,

So far we have examined finite interval orders. We might ask about bounded
representations of infinite interval orders which have real representations. Given
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such an order that has no [a, f] bounded discrete representation, is there a [linite
suborder that also has no bounded discrete representation?
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