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Abstract

Given a tournament with an acyclic tournament as a feedback arc set we give necessary and
sufficient conditions for this feedback arc set to have minimum size.
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1 Introduction

A tournament is a digraph where the underlying undirected graph is complete. A feedback arc set
of a digraph is a set of arcs that when reversed makes the resulting digraph acyclic. It is well known
that the problem of determining if a given feedback arc set in a digraph has minimum size is NP-
hard. We give necessary and sufficient conditions for a feedback arc set to be minimum in the case
that the digraph is a tournament and the feedback arc set is an acyclic tournament.

Finding minimum feedback arc sets is equivalent to finding rankings of the vertices that mini-
mize the number of inconsistencies, arcs xy with y ranked ahead of x. The set of inconsistencies
corresponds to the feedback arc set.

We will show that if a tournament has a ranking with an acyclic tournament as the associated
feedback arc set then there is an optimal ranking that will decompose into parts with the ‘defining’
ranking (putting the vertices of the acyclic tournament in reverse order) and parts with one other
form of ranking.

We have looked at the problem that motivated this paper: determining the smallest size of a
tournament having a given acyclic digraph as a minimum feedback arc set in [2],[4],[5],[6]. When
the acyclic digraph is a tournament, bounds for the size of the larger tournament were found using
a particular class of integer programming problems. Our results here were initially motivated by
the problem of showing that solutions to these integer programming problems would provide exact
solutions. We show here that this is the case.

2 Definitions

As noted above a tournament is a digraph where the underlying undirected graph is complete, a
feedback arc set of a digraph is an acyclic set of arcs when reversed makes the resulting digraph
acyclic and a minimum feedback arc set is a smallest sized feedback arc set. For a digraph D with
vertex set V (D) and arc set A(D) we will use V and A when there is no ambiguity. A ranking of
the vertices V is a bijection between V and {1, 2, . . . , |V |}.
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Definition 1 Let T be a tournament and let π be a ranking of the vertices of T . The set of incon-
sistencies with respect to π, denoted INC(π, T ), is the set {(x, y) ∈ A(T )|π(x) > π(y)}. Given
a tournament T , a ranking π is said to be optimal if for any ranking π′ of V (T ), |INC(π, T )| ≤
|INC(π′, T )|.

A ranking is optimal if and only if the corresponding set of inconsistencies forms a minimum
feedback arc set.

For x = (x0, x1, x2, . . . , xn) we use T (x, n) to describe a tournament that has the acyclic
tournament Tn as a feedback arc set as follows. First define Tn by V (Tn) = {v1, v2, . . . vn} and
A(Tn) = {(vj , vi)|j > i}. Then V (T (x, n)) = V (Tn)

⋃{ui,j |0 ≤ i ≤ n, 1 ≤ j ≤ xi} and A(T (x, n)) =
A(Tn) ∪ {(ui,j , us,t) : i < s or i = s and j < t} ∪ {(vi, us,t)|i ≤ s} ∪ {(ui,j , vs)|i < s}. That is,
V (T (x, n)) consists of the vertices of Tn along with sets of ‘extra’ vertices Ui = {ui,j |1 ≤ j ≤ xi}
appearing between vi and vi+1 in the ranking σ which makes Tn a feedback arc set. Thus the arc
set consists of those arcs consistent with the ranking

σ =
〈
u0,1, . . . , u0,x0 , v1, u1,1, . . . , u1,x1,, v2, . . . , vn−1, un−1,1, . . . , un−1,xn−1 , vn, un,1, . . . , un,xn

〉

except for arcs vivj , which are inconsistent with the ranking. We will refer to this ranking as the
defining ranking. As the notation implies, tournaments with acyclic subtournaments as a feedback
arc set are determined by the size n of the acyclic tournament and the sizes xi of the sets of ‘extra’
vertices between vertices of the acyclic tournament in the defining ranking.

We will see that for our purposes we will be able to treat segments of ui,j vertices with the same
index i as a group. Thus, for simplicity we denote 〈ui,1, ..., ui,xi〉 using Ui. Note that each vertex in
Ui has the same adjacencies to vertices outside of Ui. Thus we will refer to arcs (z, Ui) and (Ui, z)
with no ambiguity. Vertices v1, v2, ..., vn will be referred to as v-vertices and sets U0, U1, ..., Un will
be referred to as U -sets.

In order for Tn to be a minimum feedback arc set of T (x, n) any ranking must have at least as
many inconsistencies as the defining ranking. By looking at one class of alternate rankings we will
derive bounds on the sizes xi. We will then show that it is enough to check only these particular
alternate rankings to determine if the defining ranking is optimal for a given x.

For the block ranking we place the v-vertices in the ‘middle’ in ‘correct’ order (with no inconsis-
tencies) and the U -sets in ‘correct’ order at the ends as follows;

〈
U0, U1, U2, ..., Ubn

2 c, vn, vn−1, ..., v1, Ubn
2 c+1, ..., Un−1, Un

〉

So all of the inconsistencies are between v-vertices and U−sets.
A hybrid ranking is a ranking that can be partitioned into segments, where each of the parts has

the form of either a defining or block ranking. For example

〈U0, U1, v3, v2, v1, U2, U3, v4, U4, v5, U5〉 .

In any optimal ranking U0 will come first and Un will come last. Thus since U0 and Un can be
arbitrary for the purposes of determining if Tn is a minimum feedback arc set we will omit them
from consideration in what follows. If Ui = ∅ for some 1 < i < n we will include a Ui (with size 0)
for convenience in notation.

If Tn is a minimum feedback arc set of T (x, n), then xi ≥ 1 for 1 ≤ i ≤ n− 1. Otherwise vi and
vi+1 are adjacent in the ranking and switching them yields a ranking with fewer inconsistencies.

For the block ranking, it is easy to see that the only inconsistencies are those between Ui and
vj for i ≤ ⌊

n
2

⌋
and j ≤ i and for i ≥ ⌊

n
2

⌋
+ 1 and j < i. So for example, the block ranking
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〈U0, U1, U2, v5, v4, v3, v2, v1, U3, U4, U5〉 has x1 + 2x2 + 2x3 + x4 inconsistencies. Since the defining
ranking in this example has

(
5
2

)
= 10 inconsistencies a necessary condition for the defining ranking

to be optimal is that x1 +2x2 +2x3 +x4 ≥ 10. In the general case we get the inequalities x1 +2x2 +
· · ·+ n−1

2 x(n−1)/2 + n−1
2 x(n−1)/2+1 + · · ·+ 2xn−2 + xn−1 ≥

(
n
2

)
when n is odd and x1 + 2x2 + · · ·+

n
2 xn/2 + (n

2 − 1)x(n/2+1) + · · ·+ 2xn−2 + xn−1 ≥
(
n
2

)
when n is even.

By considering the hybrid ranking obtained by switching the subtournament 〈vj , Uj , vj+1, Uj+1, . . . , Uh−1, vh〉
to the block ranking we get similar inequalities. Note that if a consecutive segment of a ranking is
not optimal then the entire ranking is not. Thus we get the following necessary conditions noted in
[2] for T (x, n) to have Tn as a minimum feedback arc set:

h−j
2∑

i=1

i(xj+i−1 + xh−i) ≥
(
h−j+1

2

)
for h− j even (1)

(
h−j−1

2∑
i=1

i(xj+i−1 + xh−i)

)
+ h−j+1

2 xj+(h−j+1)/2 ≥
(
h−j+1

2

)
for h− j odd (2)

where the
∑

term is interpreted as 0 if h− j = 1.
We will show that these conditions are also sufficient for Tn to be a minimum feedback arc set.

3 Optimal Rankings

Our aim is to show that if (1) and (2) hold then Tn is a minimum feedback arc set of T (x, n). This
is equivalent to showing that the defining ranking is optimal in these cases.

Given any optimal ranking π of V (T (x, n)) we will show that it can be transformed into a hybrid
ranking π′ without increasing the number of inconsistencies. So π′ is optimal. Then (1) and (2)
imply that π′ has at least as many inconsistencies as the defining ranking. So the defining ranking
must also be optimal.

Definition 2 Let y and z be two v-vertices, u-vertices or U -sets in a ranking π such that π(y) <
π(z).

(I) Switching y and z switches the place of y and z in the ranking. That is, switching creates
a new ranking π′ such that (i): π′(y) = π(z) and π′(z) = π(y) and (ii): π′(w) = π(w) for all other
vertices w.

(II) Moving y to the immediate left of z places y just before z in the ranking. That is, moving
y to the left of z creates a new ranking π′ such that (i): π′(y) = π(z)− 1, (ii): π′(u) = π(u)− 1 for
π(y) < π(u) < π(z) and (iii): π′(w) = π(w) for all other vertices w. Moving z to the immediate
right of y is defined in a similar manner.

We will say that a rearrangement (such as switching or moving) of a ranking π to π′ is neutral
if |INC(π′, T )| = |INC(π, T )|, is positive if |INC(π′, T )| − |INC(π, T )| > 0 and is negative if
|INC(π′, T )| − |INC(π, T )| < 0. Thus a ranking π is not optimal if it admits a negative rearrange-
ment.

Parts of the next lemma can easily be seen to be instances of a more general results.

Lemma 3 (i) If y and z appear consecutively in an optimal ranking π and yz is an arc then π(y) =
π(z)− 1.

(ii) If π is an optimal ranking of T (x, n) then π(ui,j) < π(us,t) for i < s or i = s and j < t.
(iii) There exists an optimal ranking π of T (x, n) such that for each i the vertices in the set Ui

appear consecutively.
(iv) If π is an optimal ranking of T (x, n) and π(vi+1) < π(vi) then moving vi to the immediate

right of vi+1 and moving vi+1 to the immediate left of vi are neutral.
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Proof. (i) Switching y and z removes the inconsistency zy and does not change any other
inconsistencies.

(ii) Assume π(us,t) < π(ui,j) and that π′ is obtained from π by switching us,t and ui,j . This
removes the inconsistency ui,jus,t and does not create any new inconsistencies since in this case if
us,tx is an arc then so is ui,jx. The switch is negative, contradicting the optimality of π.

(iii) By (i), π(ui,j) < π(ui,j+1). We will show that if ui,j and ui,j+1 are not consecutive in π
then ui,j can be moved to the immediate left of ui,j+1 and ui,j+1 can be moved to the immediate
right of ui,j . Repeating either of these for j = 1, 2, . . . establishes the result.

For z distinct from {ui,j , ui,j+1} we have ui,jz ∈ A ⇔ ui,j+1z ∈ A. Let S+ = {x|π(ui,j) < π(x) <
π(ui,j+1) and ui,jx, ui,j+1x ∈ A} and let S− = {x|π(ui,j) < π(x) < π(ui,j+1) and xui,j , xui,j+1 ∈
A}. If π′ is obtained from π by moving ui,j to the immediate left of ui,j+1 then INC(π′) −
INC(π) = S+ − S−. If π′′ is obtained from π by moving ui,j+1 to the immediate right of ui,j then
INC(π′′)−INC(π) = S−−S+. Since π is optimal neither of these switches can be negative. Noting
that S+ and S− are disjoint we have |S+| − |S−| ≥ 0 and |S−| − |S+| ≥ 0. Hence |S−| = |S+| and
both switches are neutral.

(iv) Let S+
i+1 = {x|π(vi+1) < π(x) < π(vi) and vi+1x ∈ A}, S+

i = {x|π(vi+1) < π(x) <

π(vi) and vix ∈ A}, S−i+1 = {x|π(vi+1) < π(x) < π(vi) and xvi+1 ∈ A} and S−i = {x|π(vi+1) <
π(x) < π(vi) and xvi ∈ A}. If π′ is obtained from π by moving vi+1 to the immediate left of vi then
INC(π′) − INC(π) = S+

i+1 − S−i+1. If π′′ is obtained from π by moving vi to the immediate right
of vi+1 then INC(π′′) − INC(π) = S−i − S+

i . Since π is optimal neither of these switches can be
negative. Noting that S−i is disjoint from S+

i and S−i+1 is disjoint from S+
i+1 we have |S+

i+1|−|S−i+1| ≥ 0
and |S−i |−|S+

i | ≥ 0. Since also S+
i ⊇ S+

i+1 and S−i+1 ⊇ S−i we have 0 ≤ |S+
i+1|−|S−i+1| ≤ |S+

i |−|S−i | ≤
0. Hence |S+

i+1| = |S−i+1| and |S−i | = |S+
i | and both switches are neutral.

By parts (ii) and (iii) of Lemma 3 there are always optimal rankings π where the ui,j vertices
can be treated as U -sets. In addition part (ii) shows that π(Ui) < π(Uj) for i < j. We will assume
this is the case in what follows.

Lemma 4 There exists an optimal ranking of T (x, n) that is hybrid for each x and each n.

Proof. We can ignore U0 and Un as these sets appear first and last respectively in any optimal
ranking. The proof is by induction on n. The result is trivial when n = 1. We will show that there
is a ranking with an initial segment that is either defining or block. Then, by induction, there is an
optimal hybrid ranking on the remaining vertices. Together these give an optimal hybrid ranking of
the tournament, establishing the result.

Note that (Uj , w) ∈ A except when w 6= v1. Thus at most two vertices can precede U1 in an
optimal ranking and if there are two such vertices one of them must be v1. If not, then moving U1

to the beginning of the ranking would be negative. Then, by Lemma 3(ii) the ranking begins (a)
〈U1, . . .〉 or (b) 〈v1, U1, . . .〉 or (c) 〈v1, vj , U1, . . .〉 or 〈vj , v1, U1, . . .〉 for some j 6= 1.

In case (a) there is some non-empty B that does not contain any U -sets such that π begins
〈U1, U2, . . . , Uk, B, Uk+1, . . .〉. Take an optimal ranking of this type with k maximal. By repeated
applications of Lemma 3 (iv) we can assume that that vj ∈ B implies vj−1 ∈ B. Thus the set of
vertices in B is {v1, v2, . . . , vj} for some j. By repeated applications of Lemma 3 (i) the ranking B
is 〈vj , vj−1, . . . , v3, v2, v1〉.

Let π′ be obtained from π by moving Uk+1 to the immediate right of Uk and let π′′ be obtained
from π by moving Uk to the immediate left of Uk+1. By optimality of π and maximality of k these
moves are negative and negative or neutral respectively. Thus INC(π′)− INC(π) = (k + 1)− (j −
(k + 1) + 1) = 2k − j + 2 > 0 and INC(π′′)− INC(π) = (j − (k + 1) + 1)− k = j − 2k ≥ 0. Hence
2k ≤ j ≤ 2k + 1.
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So the initial segment of the ranking is a block ranking 〈U1, U2, . . . , Uk, vj , vj−1, . . . , v2, v1, Uk+1, Uk+2, . . . , Uj−1, . . .〉
where j = 2k or j = 2k + 1.

For case (b), v1, U1 is the defining ranking on these vertices.
For (c), if the ranking begins 〈v1, vj , U1 . . .〉 then switching v1 and vj would be negative contra-

dicting optimality. So the ranking begins 〈vj , v1, U1 . . .〉 and moving U1 to first is neutral. The new
ranking is an instance of case (a).

In some sense the hybrid rankings come close to describing all optimal rankings of T (x, n).
However there are situations where rankings that are not hybrid are also optimal. For exam-
ple, if the block ranking 〈U1, U2, v6, v5, v4, v3, v2, v1, U3, U4, U5〉 is optimal then so is the ranking
〈U1, U2, v6, v4, v3, v2, v1, U3, U4, v5, U5〉 in the case that |U3| = |U4| = 2.

4 Conditions

Recall that if Tn is a feedback arc set of some larger tournament then the larger tournament is
T (x, n) for some x. The results of the previous section immediately give our main result showing
sufficiency of the necessary conditions on x for Tn to be a minimum feedback arc set of T (x, n).

Theorem 5 If a tournament T has the acyclic tournament Tn on n vertices as a feedback arc set
then T = T (x, n) for some x and Tn is a minimum feedback arc set of T (x, n) if and only if

h−j
2∑

i=1

i(xj+i−1 + xh−i) ≥
(
h−j+1

2

)
for h− j even (1)

(
h−j−1

2∑
i=1

i(xj+i−1 + xh−i)

)
+ h−j+1

2 xj+(h−j+1)/2 ≥
(
h−j+1

2

)
for h− j odd (2)

where the
∑

term is interpreted as 0 if h− j = 1.

Proof. We have already noted the necessity of the conditions.
By Lemma 4 there exists a hybrid ranking π which is optimal. We need to show that σ which has

Tn as its set of inconsistencies is also optimal. We obtain σ from π by rearranging each segment that
is a block ranking into a defining ranking. The conditions (1) and (2) insure that each rearrangement
does not increase the number of inconsistencies. Hence σ is also optimal.

This result implies a polynomial algorithm for determining if a feedback arc set is minimum in
the case that the digraph is a tournament and the feedback arc set is an acyclic tournament. We
only need to check the feasibility of

(
n
2

)
inequalities found in the statement of Theorem 5.

The integer programming problems (mentioned in the introduction) used to determine bounds
on the size of a smallest tournament having the acyclic tournament of size n as a minimum feedback

arc set are min
n∑

i=0

xi subject to (1) and (2) with the xi non-negative integers. Theorem 5 shows

that exact solutions to these integer programming problems if the solutions could be found in fact
give exact bounds to the size problem. An upper bound of 2n − 4 (for n ≥ 3) comes from setting
x0 = xn = 0, x1 = xn−1 = 1 and all other xi = 2. Feasibility is easily checked. It was also shown
directly that for this x, we have Tn as a minimum feedback arc set of T (x, n). In [4] a lower bound
of 2n− 2− blog2 nc or 2n− 3− blog2 nc (depending on the binary expansion of n) is established. In
[4] and [1] it is shown that this lower bound is optimal for several infinite classes of values of n. We
conjecture that these lower bounds are indeed optimal.
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