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Abstract

A De Bruijn torus is a periodic d−dimensional k−ary array such that each
n1 × · · · × nd k−ary array appears exactly once with the same period. We
describe two new methods of constructing such arrays. The first is a type of
product that constructs a k1k2−ary torus from a k1−ary torus and a k2−ary
torus. The second uses a decomposition of a d-dimensional torus to produce
a d + 1 dimensional torus. Both constructions will produce two dimensional
k−ary tori for which the period is not a power of k. In particular, for k = Πpαl

l

and for all natural numbers (n1, n2), we construct 2-dimensional k−ary De

Bruijn tori with order 〈n1, n2〉 and period 〈q, kn1n2/q〉 where q = kΠp
blogpl

n1c

l .

1 Introduction

A d−dimensional De Bruijn torus B with base k, order ~N = 〈n1, n2, . . . , nd〉 and

period ~R = 〈r1, r2, . . . , rd〉 is an infinite periodic array with period ~R and entries from

[k] = {0, 1, . . . , k−1} (‘k-ary’) such that every k-ary matrix of size ~N appears exactly

once periodically with period ~R. We call such an array a ( ~R; ~N)d
k De Bruijn torus

and denote the set of all such arrays by dBd
k(

~R; ~N).
A fundamental block of B is an array consisting of ri consecutive rows in the ith

dimension for i = 1, 2, . . . , d. Repeating such a block produces B. We will sometimes
refer to a fundamental block of B as B when there is no chance of confusion. Thus,
we will say that a matrix appears uniquely in an infinite periodic array if it appears
uniquely in a fundamental block. In this case addition on subscripts in the ith di-
mension is performed modulo ri and we think of B toroidally. Both perspectives,
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viewing B as a toroidal array and viewing B as an infinite periodic array have been
used in the study of De Bruijn tori. We use the infinite array version here to simplify
notation.

We will say that a particular matrix M of size ~N appears in B at position ~I =
(i1, i2, . . . , id) if M appears in the positions ~I through ~I + ~N . If B = [b~I ] is any
d-dimensional torus, the projection of B along ij = h is the d − 1-dimensional torus
consisting of all entries a~I for which ij = h. So, for example, in 2 dimensions the
projection along i2 = 7 is the 7th column (after the 0th column).

A 1-dimensional De Bruijn torus is what has come to be known as a De Bruijn

cycle. (See Fredricksen [4] for a survey of De Bruijn cycles.) Two dimensional De
Bruijn tori are examined in Cock [1], Fan et al. [3] and others. See Hurlbert and
Isaak [5] for references. A 2-dimensional De Bruijn torus (r1, r2; n1, n2)

2
k is square

if n1 = n2 and r1 = r2. Except for small values of nj, it has been shown that the
obvious necessary conditions rj > nj and r1r2 = kn1n2 are also sufficient for the
existence of square tori. (See Fan et al. [3] when k = 2 and Hurlbert and Isaak [5] for
the general case.) For non-square two-dimensional tori, Paterson has recently shown
that the necessary conditions are also sufficient when the base k is a prime power.
His methods include (among others) techniques like the those discussed in sections 2
and 3. See [8,9,10,11] for more details on these results.

For general De Bruijn tori, we believe that when the rj are powers of the base
k, the necessary conditions Πrj = kΠnj and rj > nj are also sufficient. The con-
structions in this paper are a step towards resolving this question. The term product
construction in Section 2 shows that it is sometimes enough to consider only the
case in which k is a prime power. For example, we can construct a (152, 154; 3, 2)15

torus from a (32, 34; 3, 2)3 torus and a (52, 54; 3, 2)5 torus. However, we cannot form a
(151, 155; 3, 2)15 torus from a (31, 35; 3, 2)3 torus and a (51, 55; 3, 2)5 torus because the
base 3 torus does not exist. In particular, if k has prime factorization k = Πpα1

i then

considering base pαi

i tori will suffice if for each rj = Πp
βi,j

i , we have p
βi,j

i > nj.
In Section 3, we develop a general method of constructing De Bruijn tori from

decompositions of lower dimensional tori. In Section 4, this construction is applied
to a particular decomposition of 1-dimensional De Bruijn cycles to prove our main
result.

Theorem 1.1. For all natural numbers n1, n2, k there exists a (q, kn1n2/q; n1, n2)
2
k

De Bruijn torus, where k has prime decomposition k = Πpαl

l and q = kΠp
blogpl

n1c

l .

Observe that in most cases these periods will not be powers of k. This is the
first construction of a general family for which the periods are not powers of k. (See
Hurlbert and Isaak [6] for the case n1 = n2 = 2).
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2 Term Products

Definition 2.1. Let B = [b~I ] be an infinite k-ary matrix and let B ′ = [b′~I ] be an

infinite k′-ary matrix. The term product B � B ′ is the kk′-ary matrix with entry ~I
given by k′b~I + b′~I .

We will often find the notation [B]~I useful in place of b~I , in which case the above
definition may read [B �B ′]~I = k′[B]~I + [B′]~I . Note that the term product of B and
B′ could be viewed as having entries specified by the ordered pairs (b~I , b

′
~I
). We have

used a particular bijection between [k] × [k′] and [kk′].
For example,

0 0 1
1 1 2
2 2 0

is a fundamental block of a (3, 3; 1, 2)2
3 De Bruijn array B and (0, 0, 1, 1) is a funda-

mental block of a (1, 4; 1, 2)2
2 De Bruijn array B′. The term product B�B ′ has period

〈3, 12〉. The ordered pairs giving rise to a fundamental region of the term product

(0, 0) (0, 0) (1, 1) (0, 1) (0, 0) (1, 0) (0, 1) (0, 1) (1, 0) (0, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (2, 1) (1, 1) (1, 0) (2, 0) (1, 1) (1, 1) (2, 0) (1, 0) (1, 1) (2, 1)
(2, 0) (2, 0) (0, 1) (2, 1) (2, 0) (0, 0) (2, 1) (2, 1) (0, 0) (2, 0) (2, 1) (0, 1).

One can check that this term product is a (3, 12; 1, 2)2
6 De Bruijn array. As the

following shows, this is no accident.

Theorem 2.2. Let ~R = 〈r1, . . . , rd〉 and ~R′ = 〈r′1, . . . , r
′
d〉 have gcd(rj, r

′
j) = 1 for

j = 1, 2, . . . , d. If B ∈ dBd
k(~R; ~N) and B′ ∈ dBd

k′(~R′; ~N) then (B�B′) ∈ dBd
kk′(~R′′; ~N)

with ~R′′ = 〈r1r
′
1, r2r

′
2, . . . , rdr

′
d〉.

Proof. By the above remarks, we will view the entries of B�B ′ as ordered pairs from
[k] × [k′]. B � B′ is clearly periodic since it is periodic in both terms of the ordered
pair. The period in the jth dimension is the least common multiple of rj and r′j. This

is rjr
′
j by relative primality. Thus ~R′′ is the period.

Let S be any matrix of order ~N with entries from [k] × [k′]. Let S1 be the order
~N matrix of first coordinates in S and S2 the order ~N matrix of second coordi-
nates. S1 appears periodically in some location ~I in B and S2 appears periodically
in some location ~I ′ in B′. By the relative primality condition there is exactly one
~0 ≤ ~L < ~R′′ such that there exist ~M = 〈m1, . . . , md〉, ~M ′ = 〈m′

1, . . . , m
′
d〉 with

mjrj + [I]j = m′
jr

′
j + [I ′]j = [L]j for j = 1, 2, . . . , d. At ~L, S1 appears in the first

coordinate and S2 appears in the second coordinate. Thus ~L is the unique location
in the fundamental block located at ~0 of B � B′ where S appears. 2
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Corollary 2.3. Let k and k′ be relatively prime. If B ∈ dBd
k(~R; ~N) and B ∈

dBd
k′(~R′; ~N) then B � B′ ∈ dBd

kk′(~R′′; ~N) with ~R′′ = 〈r1r
′
1, r2r

′
2, . . . , rdr

′
d〉.

Proof. Since kΠnj = Πrj, the factors of the rj must be factors of k. Similarly, the
factors of the r′j must be factors of k′. If gcd(k, k′) = 1 then gcd(rj, r

′
j) = 1 for

j = 1, 2, . . . , d. 2

3 Decomposition Construction

Ma [7] (in the binary case) and Cock [1] used De Bruijn cycles as building blocks
for two-dimensional De Bruijn tori. Cock also notes (without proof) that the same
construction works in higher dimensions. A similar technique is used by Etzion [2] to
construct two-dimensional binary tori building on decompositions of De Bruijn tori.
In this section we extend these techniques to construct (d+1) dimensional De Bruijn
tori from particular decompositions of d-dimensional tori. Our construction will in
certain cases produce De Bruijn tori for which the entries in the period are not powers
of the base k.

Definition 3.1. A family F = {F0, . . . , Ft−1} of d-dimensional periodic k-ary arrays

with period ~R such that each k-ary matrix of size ~N appears in exactly one of the
arrays and it appears uniquely in that array is called a d−dimensional k-ary De Bruijn
family with period ~R, order ~N and size t.

For example the strings F0 = (0, 0, 0, 1) and F1 = (1, 1, 1, 0) are fundamental
blocks of a 1-dimensional binary De Bruijn family with period 〈4〉, order 〈3〉 and size
2. Each binary string of length 3 appears exactly once in one of the strings (viewed
cyclically).

Lemma 3.2. Let F = {F0, . . . , Ft−1} be a k−ary d−dimensional De Bruijn family

of order ~N = 〈n1, n2, . . . nd〉 and period ~R = 〈r1, r2, . . . rd〉 with n = Πnj and r = Πrj.
Then t = kn/r.

Proof. There are r distinct matrices of size ~N in each Fl. There are kn distinct
k−ary matrices of size ~N . Since each appears in exactly one of the arrays in the
family, tr = kn. 2

Define the shift of a periodic sequence A = (a0, a1, . . .) to be the sequence Ai =
(ai, ai+1, . . .). Construct a 2-dimensional array from the family F0 = (0, 0, 0, 1) and
F1 = (1, 1, 1, 0) as follows: for each column, the entry of the binary string W deter-
mines whether the column is a cyclic shift of F0 or F1 and the entry of V determines
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the amount of shift. We get the following (4, 16; 3, 2)2
2 De bruijn torus.

V = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
W = 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1

0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1
0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1
0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1

For example, with [W ]7 = 0, [V ]7 = 3, and [W ]8 = 1, the seventh column of the
array being F 1

0 implies that the eighth column of the array is F 0
1 . In general, if column

j is F
sj

[W ]j
then column j + 1 is F

sj+1

[W ]j+1
, where sj+1 = sj + [V ]j. For every binary pair

(w, w′) and 4−ary singleton (v) there is a unique j such that (w, w′) = ([W ]j, [W ]j+1)
and (v) = ([V ]j). For example the pair (0, 1) appears with (3) starting in the 7th

column. (The proof in the lemma below describes how to construct such pairs of
strings.)

To find a particular 3 by 2 array, for example
(

0 1 0
1 1 0

)T
, observe that (0, 1, 0) appears

as the first three digits of F 2
0 and that (1, 1, 0) appears as the first three digits of F 1

1 .
The difference in these shifts is 1 − 2 ≡ 3 (mod 4). As noted above, (0, 1) and (3)
appear together starting in the seventh column and it is here that we find the array.

Theorem 3.3. Let F = {F0, . . . , Ft−1} be a k−ary d−dimensional De Bruijn family

of order ~N = 〈n1, n2, . . . nd〉 and period ~R = 〈r1, r2, . . . rd〉 with r = Πrj. For any
positive integer η, let β = tη and δ = rη−1. If any of the following hold:
(i) gcd(β, δ) = 1 or
(ii) gcd(β, δ − 1) = 1 or
(iii) gcd(β − 1, δ) = 1

then (except when exactly one rj is even and η = 2) there exists an ( ~R′; ~N ′)d+1
k

De Bruijn torus with ~N ′ = 〈n1, n2, . . . , nd, η〉 and ~R′ = 〈r1, r2, . . . , rd, rd+1〉, where
rd+1 = βδ.

Proof. We will give a construction of a (d + 1)−dimensional array B to show the
existence of the De Bruijn torus. If η = 1 simply let the projection of B~I along
id+1 = h be Fh. Assume that η ≥ 2. Let g be any bijection from [δ] to [r1]×· · ·× [rd].

Assume first that gcd(β, δ) = 1. Let V be a t-ary De Bruijn cycle of order 〈η〉
and period 〈β〉. Let U be an r-ary De Bruijn cycle of order 〈η − 1〉 and period 〈δ〉.

Construct a new array B with the ~I th entry given by

[B]~I = F
G(h)
[V ]h

,
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with h = id+1 and G(h) =
∑h

j=0 g([U ]j).
To see that a De Bruijn array is created, note that since the periods of the Fl are the

same in the first d dimensions, they remain so in B. For the (d+1)st dimension, note
that the sequence of pairs ([V ]i, g([U ]i)) is periodic with period 〈βδ〉 since gcd(β, δ) =
1. We also need the jth coordinate of G(βδ−1) to be congruent to 0 (mod rj) so that
the projection along id+1 = 0 is in the same position as that for id+1 = βδ. Summing

the jth coordinate over all d-tuples ~I ∈ Π[rj] we get r
rj

∑rj−1
l=0 l = r

rj

(

rj

2

)

. In U the

term corresponding to each d-tuple appears rη−2 = δ/r times. So the jth coordinate
of G(βδ − 1) is δ

2
(rj − 1). This is congruent to 0 modulo rj unless rj is even, the rest

of the rl are odd and η = 2.
Let V (s) = ([V ]s, [V ]s+1, . . . , [V ]s+η−1) and let U(s) = ([U ]s, [U ]s+1, . . . , [U ]s+η−2).

That is, V (s) is the length η string in V starting at position s and U(s) is the length
η − 1 string in V starting at position s. Because gcd(β, δ) = 1, the pairs (V (s), U(s))
are distinct for s = 0, 1, . . . , βδ − 1. That is, each length η string from V and length
η − 1 string from U appear together uniquely in position s for some 0 ≤ s < βδ.

Finally, to see that B is De Bruijn, consider any k-ary order ~N ′ matrix M . Let
M [h] be the order ~N submatrix projecting along id+1 = h. M [h] appears uniquely

in F . Say it appears in position ~J(h) in Fz(h). The sequence ( ~J(1) − ~J(0), ~J(2) −
~J(1), . . . , ~J(η − 1) − ~J(η − 2)) corresponds to a length η − 1 sequence appearing
uniquely in U via the bijection g. The sequence (z(0), z(1), . . . , z(η − 1)) appears
uniquely in V . These two sequences appear together in position s for exactly one
0 ≤ s < βδ since gcd(β, δ) = 1. Then M appears in B in position ~I, where id+1 = s

and the first d coordinates of ~I are given by G(s − 1) + ~J(0).
The constructions for the other cases are similar but we have to work a bit harder

to get the property that each pair (V (s), U(s)) appears uniquely in a string of pairs
with period 〈βδ〉. In the previous case, this string (although not explicitely men-
tioned) had first coordinate given by V and second coordinate given by U . We will
use a technique similar to that used by Fan et al. [3] and generalized in Hurlbert and
Isaak [5].

Consider the case that gcd(β, δ − 1) = 1. The case gcd(β − 1, δ) = 1 is similar.
Assume, without loss of generality, that the string of η− 1 zeroes appears in position
0 in U . Let U ′ be the string of length β − 1 consisting of the fundamental block of U
with the first zero removed. Let W be a string of period 〈βδ〉 with fundamental block
starting with β zeroes followed by β copies of U ′. That is, [W ]j = 0 if 0 ≤ j < β. For
0 ≤ m ≤ δ − 2 and 0 ≤ j < β − 1 let [W ]β+m(δ−1)+j = [U ]j+1. It is not difficult to
check that the pairs (V (s), W (s)) are distinct for s = 0, 1, . . . , βδ− 1. Simply replace
U with W in the construction and proof for the case gcd(β, δ) = 1. 2

Observe that if the base k is a prime, then the ri are powers of k and hence t is a
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power of k. Then the condition gcd(β − 1, δ) = 1 of the previous theorem is satisfied.
Also, when t = 1, the condition gcd(β, δ) = 1 is satisfied and we get the result that
Cock [1] noted without proof.

4 Cycle Decompositions

In the previous section we described how to construct d + 1-dimensional tori from d
dimensional tori given a certain decomposition of a De Bruijn array. In this section
we describe a general procedure for obtaining such decompositions when d = 1. The
period and the size of the family F will depend on an initial choice of a De Bruijn
cycle. We will look at one particular case to construct a family of 2-dimensional tori.

Definition 4.1. Let A = (a0, a1, a2, . . . , ) be a k-ary infinite periodic sequence. The
difference integral of A with respect to c ∈ {0, 1, . . . , k − 1}, denoted Γ(A; c), is the
string (c, c + a0, c + a0 + a1, . . . , c +

∑i−1
j=0 aj, . . .) with addition performed modulo k.

That is, the initial term of Γ(A; c) is [Γ(A; c)]0 = c and the jth term [Γ(A; c)]j is
[Γ(A; c)]j−1 + aj−1.

For example, (1) shows the 6−ary fundamental block A = (0, 1, 2, 3, 4, 5) repeated
twice and several of its difference integrals.

A = 0 1 2 3 4 5 0 1 2 3 4 5
Γ(A; 0) = 0 0 1 3 0 4 3 3 4 0 3 1
Γ(A; 1) = 1 1 2 4 1 5 4 4 5 1 4 2
Γ(A; 2) = 2 2 3 5 2 0 5 5 0 2 5 3

(1)

It is easy to check that Γ(A; 3) is a cyclic shift of Γ(A; 0), Γ(A; 4) is a cyclic shift
of Γ(A; 1), and Γ(A; 5) is a cyclic shift of Γ(A; 2). The relation Γ(A; c + 3) = Γ(A; c)6

holds because gcd(6, 3) = 3.

Lemma 4.2. Let A = {A0, A1, . . . , At−1} be a k-ary, 1-dimensional De Bruijn family
of order 〈n〉 and period 〈r〉. If there is an x ∈ [k] such that

∑r−1
l=0 [Aj]l ≡ x (mod k)

for all j ∈ [t], then, for γ = gcd(k, x), Γ (A) = {Γ(Aj; c)|j ∈ [t]; c ∈ [γ]} is a k-ary,
1-dimensional De Bruijn family of order 〈n + 1〉 and period 〈rk/γ〉.

Proof. From the definition of difference integral we use

[Γ (Aj; c)]s ≡ [Γ (Aj; c)]s−1 + [Ai]s−1 (mod k) for s = 1, 2, . . . (2)

with [Γ (Aj; c)]0 = c. Thus the period of the strings in Γ (A) is a multiple of the
period 〈r〉 of strings in A. From (2), observe also that Γ(Aj; c) 6= Γ(A′

j; c
′) for j 6= j ′

and any c, c′.
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Again from the definition of difference integral,

[Γ (Aj; c)]s +
s′−1
∑

l=s

[Aj]l ≡ [Γ (Aj; c)]s′ (mod k) for 0 < s < s′. (3)

To find the period of Γ (Aj; c) we seek the smallest m such that

[Γ (Aj; c)]s ≡ [Γ (Aj; c)]s+mr

for all s (since the period is a multiple of 〈r〉). By (3) and the choice of x this occurs
if mx ≡ 0 (mod k). The smallest such m is k/γ and so the period is 〈rk/γ〉.

We also have

[Γ (Aj; c)]s + (c′ − c) ≡ [Γ (Aj; c
′)]s (mod k) for s = 0, 1, . . . . (4)

Hence, by (3) and (4), we have Γ(A; c + x) = Γ(A; c)r and Γ(A; c + γ) = Γ(A; c)w,
where wx ≡ γ (mod k

γ
) (w is unique since gcd(x

γ
, k

γ
) = 1).

Finally, we must show that if v = (v0, v1, . . . , vn) is a k−ary string then it appears
uniquely in exactly one of the strings in Γ(A). Let ∆v = (v1−v0, v2−v1, . . . , vn−vn−1).
Then v appears in position s in Γ(Aj; c) only if (by (2)), ∆v appears in position s of
Aj and v0 = c +

∑s−1
l=0 [Aj]l. Since A is a De Bruijn family, there is only one such j.

Let c = v0 −
∑s−1

l=0 [Aj]l and let c′ < γ satisfy c ≡ c′ (mod γ). Then since Γ(Aj; c)
is a shift of Γ(Aj; c

′), v appearing uniquely in Γ(Aj; c) implies v appears uniquely in
Γ(Aj; c

′). 2

Now for all i > 1 let

Γ(A; c1, c2, . . . , ci) = Γ (Γ(A; c1, c2, . . . , ci−1); ci)

and for a family A of strings, let

Γ(i) (A) = {Γ(A; c1, c2, . . . , ci)|A ∈ A, cl ∈ [k], l = 1, 2, . . . , i} .

Observe in (1) that each entry of Γ(A; 0) is the sum (mod 6) of the entry to the
left and the entry above and to the left. This Pascal property, as stated in (2), allows
the computation of arbitrary terms as in the following lemma.

Lemma 4.3.

[Γ(A; c1, c2, . . . , ci)]s ≡
s−1
∑

l=0

(

s − 1 − l

i − 1

)

xl +
i
∑

j=1

(

s

i − j

)

cj (mod k).
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Proof. By induction. The base cases i = 1 or s = 0 are straightforward to check.
Then,

[Γ(A; c1, c2, . . . , ci)]s ≡ [Γ(A; c1, c2, . . . , ci)]s−1 + [Γ(A; c1, c2, . . . , ci−1)]s−1

≡
s−2
∑

l=0

(

s − 2 − l

i − 1

)

xl +
i
∑

j=1

(

s − 1

i − j

)

cj

+
s−2
∑

l=0

(

s − 2 − l

i − 2

)

xl +
i−1
∑

j=1

(

s − 1

i − j − 1

)

cj

=
s−2
∑

l=0

(

s − 1 − l

i − 1

)

xl + ci +
i−1
∑

j=1

(

s

i − j

)

cj

=
s−2
∑

l=0

(

s − 1 − l

i − 1

)

xl + +
i
∑

j=1

(

s

i − j

)

cj (mod k).

2

We now consider the strings obtained by iterating Γ starting with 0, 1, . . . as in
(1). Iterating Γ with different initial string will produce different results in terms of
periods.

Theorem 4.4. Let k have prime factorization k = Πpαl

l and let A ∈ dB1
k(k, 1) have

fundamental block (0, 1, 2, . . . , k − 1). Then Γ(i)(A) is a De Bruijn family of order

〈i + 1〉 and period 〈kΠp
blogpl

(i+1)c

l 〉, where A = {A}.

Proof. It is enough to prove the theorem for k = pα a prime power. This follows by
an argument similar to the term product construction of Theorem 2.2. We omit the
details as they are nearly identical to Theorem 2.2.

Assume k = pα for p a prime. The proof is by induction on i. Now [A]0 + [A]1 +
· · · + [A]k−1 = 0 + 1 + . . . (k − 1) = k(k − 1)/2, and so by Lemma 4.2, Γ(A) is a
De Bruijn family of order 〈2〉. The period depends on the parity of k. If k is odd,
k(k − 1)/2 ≡ k (mod k) and the period is 〈k〉. If k is even, k(k − 1)/2 ≡ k/2
(mod k) and the period is 〈2k〉.

Now assume by induction that the result holds for Γ(i−1)(A). Let u = blogp ic.

Then the period of Γ(i−1)(A) is 〈r〉 = 〈pα+u〉. Observe that

r−1
∑

h=0

[Γ(A; c1, c2, . . . , ci−1)]h ≡ [Γ(A; c1, c2, . . . , ci−1, 0)]r (mod k) (5)

by (3). By Lemma 4.2 and (5), we need to check that there exists an x such that
[Γ(A; c1, c2, . . . , ci−1, 0)]r ≡ x (mod k) for all choices of c1c2 . . . ci−1 and we must
determine x.

9



Now, by the choice of A and by Lemma 4.3

[Γ(A; c1, c2, . . . , ci−1, 0)]r ≡
r−1
∑

l=0

(

r − 1 − l

i − 1

)

l +
i
∑

j=1

(

r

i − j

)

cj (6)

=

(

r

i + 1

)

+
i−1
∑

j=1

(

r

i − j

)

cj.

Here we have used a basic combinatorial identity and ci = 0.
For (i − j) = 1, 2, . . . , i − 1 ≤ pu+1 − 2, pα divides

(

r

i−j

)

since r = pα+u. Hence

each term in in the sum on the right side of (6) is congruent to 0 modulo k = pα. So
x exists. (The sum of the first r terms of Γ(A; c1, c2, . . . , ci−1) is independent of the
choice of the cl. Indeed, x exists and is independent of the choice of the cl for any
initial choice of A.) We have

x ≡

(

r

i + 1

)

≡

(

pα+u

i + 1

)

(mod k).

If pu ≤ i ≤ pu+1 − 2 this is equivalent to 0 modulo pα and the period for
Γ(i)(A) remains 〈pα+blogp(i−1+1)c〉 = 〈pα+blogp ic〉 = 〈pα+blogp(i+1)c〉. If i = pu+1 − 1

then
(

pα+u

i+1

)

=
(

pα+u

pu+1

)

, which is equivalent to pα−1 modulo pα. Hence, by Lemma 4.2,

the period is 〈pα+blogp(i−1+1)c pα

pα−1 〉 = 〈pα+1+blogp ic〉 = 〈pα+blogp(i+1)c〉. 2

Now we can apply Theorem 3.3 to the De Bruijn family obtained in the previous
Theorem to get new De Bruijn tori. Observe that the sizes are rarely powers of k.
For example, using the strings of (1) we obtain (12, 3 · 36n−1; 2, n)2

6 De Bruijn tori for
every n ≥ 2.

Theorem 1.1. For all natural numbers n1, n2, k there exists a (q, kn1n2/q; n1, n2)
2
k

De Bruijn tori, where k has prime decomposition k = Πpαl

l and q = kΠp
blogpl

n1c

l .

Proof. By Theorems 3.3 and 4.4. 2

Observe that an alternative proof uses Theorem 4.4 only for prime powers along
with the term product construction of Theorem 2.2.

Although this does yield De Bruijn tori whose periods are not powers of k, this
still leaves open the challenge of producing tori whose periods are not multiples of k,
such as (16, 81; 2, 2)2

6.

References

1. J.C. Cock, Toroidal tilings from De Bruijn-Good cyclic sequences, Discrete

Math., 70 (1988), 209–210.

10



2. T. Etzion, Constructions for perfect maps and pseudo-random arrays, IEEE

Trans. Inform. Theory, IT-34 (1988), 1308–1316.

3. C.T. Fan, S.M. Fan, S.L. Ma, and M.K. Siu, On De Bruijn arrays, Ars Combin.,

19 (1985), 205–213.

4. H.M. Fredricksen, A survey of full length nonlinear shift register cycle algo-
rithms, SIAM Rev., 24 (1982), 195–221.

5. G. Hurlbert and G. Isaak, On the De Bruijn torus problem, J. Combin. Theory

Ser. A, 64 (1993), 50-62.

6. G. Hurlbert and G. Isaak, A meshing technique for De Bruijn tori, To appear,
Jerusalem Combinatorics Conference Proceedings, AMS contemporary mathe-
matics series, 1994.

7. S.L. Ma, A note on binary arrays with certain window properties, IEEE Trans.

Inform. Theory, IT-30 (1984), 774–775.

8. C.J. Mitchell and K.G. Paterson, Decoding Perfect Maps, Designs, Codes and

Cryptography, 4 (1994), 11–30.

9. K.G. Paterson, Perfect maps, IEEE Trans. Inform. Theory, to appear, 1994.

10. K.G. Paterson, Perfect factors in the De Bruijn graph, manuscript, 1994.

11. K.G. Paterson, New Classes of Perfect Maps II, manuscript, 1994.

11


