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Abstract 

A minimum reversing set of a digraph is a smallest sized set of arcs which when reversed 
makes the digraph acyclic. We investigate a related issue: Given an acyclic digraph D, what is 
the size of a smallest tournataent T which has the arc set of D as a minimum reversing set? We 
show that such a T always exists and define the reversing number ofan acyclic digraph to be the 
number of vertices in T minus the number of vertices in D. We also derive bounds and exact 
values of the reversing number for certain classes of acyclic digraphs. 

I. Introduction 

Recall that a tournament is a directed graph such that for each pair x ,y  of vertices 
exactly one of the arcs (x,y) or  (y , x )  is present. Slater [32] and Younger [38] 
introduced the study of minimum sized sets of arcs which when reversed make 
a tournament acyclic. Call such a set a minimum reversing set. As we shall observe, 
minimum reversing sets are related to other kinds of sets studied in the literature of 
electrical engineering, statistics, and mathematics. These are feedback arc sets, min- 
imum sets of inconsistencies in a preference ordering, cycle transversals, and sets of 
consistent arcs in a tournament. We investigate a related issue: Given an acyclic 
digraph D, what is the size of a smallest tournament T wh!eh has the arc set of D 
as a minimum reversing set? The reversing number of D is the number of "extra 

vertices" in T. 
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We shall adopt the graph theoretic notation that is summarized at the end of this 
section. If F = { ( x l , y ~ )  . . . . .  (x~,y~)} is a set of arcs in a digraph, then its reversal is 
F a = { (yt, xl) . . . . .  (Yk, xk) }. Ali digraphs considered in this paper will be simple; there 
are no parallel arcs between two vertices. 

With this notation, we make the following definitions. 

Definition 1, A reversing set of a tournament T is a set of arcs F, such that ( T \ F ) u F  a 
is acyclic. A minimum reversing set in T is a reversing set of minimum size. 

The notation ( T \ F ) u F  a will be used often and indicates the tournament obtained 
by reversing the direction of the arcs in the set F. 

Define an ordering on a tournament T on n vertices as a function ¢ from the vertex 
set of T to the set { 1,2 . . . . .  n}. An ordering ~ is said to be acyc&" when o(x) < o0') 
whenever (x,.v) is an arc of T. Since an acyclic tournament has ~ unique acyclic 
ordering (see e.g. [26"1) that is in fact a linear order, we will talk about the acyclic order 
or the order obtained after reversing the arcs of a reversing set. Given a general 
ordering o of the vertices of a tournament, we define the set of backwards arcs relative 
to tr to be the set of arcs (v,w) in the tournament such that a(w) < a(v). With this 
notation, a reversing set F is the set of backwards arcs relative to the acyclic ordering 
of the tournament obtained by reversing the arcs in F. 

Definition 2. Given an acyclic digraph D, the reversing number r(D) of D is 
min(I V(T)I - I V(D)I), where the minimum is taken over all tournaments T such that 
D is a minimum reversing set of T. 

We show in Theorem 7 that the reversing number is well defined if and only if D is 
an acyclic digraph, justifying the definition. 

In our study of reversing numbers we will make use of results on minimum 
reversing sets. Reversing sets have been studied by a number of authors in different 
contexts using different terminologies. In the electrical engineering literature feedback 
arc sets, sets of arcs whose removal makes a digraph acyclic, have been studied. Given 
a digraph D, it is easy to see that a minimum set of arcs whose removal makes 
D acyclic is also a minimum set of arcs whose reversal makes D acyclic and vice versa, 
so the minimum feedback arc set problem and the minimum reversing set problem are 
equivalent. To see this, note that it is obvious that any set of arcs whose reversal 
creates an acyclie digraph also creates an acyclic digraph by its removal (since the 
remaining arcs form an acyclic digraph). Conversely, let F be a minimal subset of the 
arc set A of a tournament whose removal makes :he tournament acyclic. By minimal- 
ity, if (x ,y)~F.  then (x,y) is contained in a cycle C=(y , v~  . . . . .  vk,.x) in 
( A \ F ) u  {(x,y)}. If there is a cycle C'  in the tournament ( A \ F ) u F  ~ obtained by 
reversing the ares of F, then replace each arc (3;x)e F R which is on C'  with the path 
y,t,~ . . . . .  vk,x from a cycle C containing (x,y) in ( A \ F ) u { ( x , y ) } .  Since all these arcs 
are in A \ F ,  this results in a closed directed chain in A \ F .  Such a chain contains 
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a cycle, contradicting the fact that removal of F creates an acyclic digraph. Thus, the 
equivalence is established. 

Runyon first suggested study of the feedback arc set problem. (His question is cited 
in the list of problems in [31] and is called the feedback cut set problem.) Tucker [36] 
gave an integer programming formulation and Younger [38] began the analysis of the 
structure of the feedback arc sets. Lawler [23] formulated the problem of finding 
a minimum feedback arc set as a quadratic assignment problem. Hakimi [13], Lempel 
and Cederbaum [24], Kamae [19], and Yau [37] continued analysis of the structure 
of these sets and guggested algorithms and heuristics for finding minimum feedback 
arc sets in general. In addition, Karp [20] showed that finding the size of a minimum 
reversing set, i.e. a minimum feedback arc set, is NP-hard in general. 

In the statistics literature, Slater [32] first suggested the study of minimum sets o f  

im'onsistencies of a preference ordering (ranking) with the observed relations from 
a complete paired comparison experiment. The graph theoretic model of paired 
comparison experiments has the objects being compared as vertices of a digraph and 
an arc from x to y ifand only ifx is preferred to y. A nearest adjoining order is a linear 
order such that the number of preferences inconsistent with that order is minimized. 
Since preferences in a linear order induce an acyclic tournament, minimizing the set 
of inconsistencies is the same as finding a minimum set of arcs whose reversal makes 
the preference digraph ucyclic and vice versa. Slater [32] sought to determine 
the probability distribution over every tournament (outcomes of all possible compari- 
sons) of the size of a minimum set of inconsistencies over all possible orderings. 
This work was continued by Alway [1], Thompson and Remage [35], Remage 
and Thompson [29], Bermond [4], Bermond and Kodratoff [6], Monjardet [25], 
Hubert [16], and Baker and Hubert [2], to name a few, with suggestions for 
algorithms and study of more general questions with different wdghtings on the 
amount of inconsistency. Ref. [16] is a survey uniting the electrical engineering and 
statistics literature. 

A third source of interest in minimum reversing sets arises in the mathematics 
literature. Erd& and Moon [10] introduced the question of finding the greatest 
integer k such that every tournament on n vertices has a set of k consistent arcs 
(i.e., an acyclic subdigraph with k arcs). The study of this value has been continued by 
Reid [27], Reid and Parker [28], Spencer [33, 34], and de la Vega [9]. A number of 
authors have studied the computational aspects of determining a largest acyclic 
subdigraph of a digraph. The complement in a digraph of the arc set of a largest 
acyclic subdigraph is a minimum reversing set of the digraph and vice versa. The 
polytop¢ of the largest acyclic subdigraph problem has been studied by Gr6tschel et 
al. [11,12] and Jiinger [18]. Korte [21] examines approximation algorithms for this 
problem. 

As we have already remarked, the problems mentioned above are all equivalent. 
(This has been proved by a number of authors.) Since reversing the arcs in a minimum 
reversing set makes a digraph acyclic, every cycle in the digraph must contain an arc 
from the minimum reversing set. That is, the arcs of a minimum reversing set are 
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a transversal of the cycles in the digraph. In fact the minimum size of a transversal of 
cycles in a digraph is equal to the size of a minimum reversing set. (This follows from 
the fact that removing the arcs of a transversal of cycles creates an acyclic digraph and 
from the equivalence of minimum feedback arc sets and minimum reversing sets.) This 
has been shown by D.amb~t ~nd Gindberg (cited in [5]) and Remage and Thompson 
[29]. All of this can be summarized by the following. 

Remark. In a tournament, the problems of finding a minimum reversing set, a min- 
imum set of inconsistencies, a minimum feedback arc set, a largest acyclic subdigraph, 
and a minimum transversal of cycles are all equivalent. 

See [18] for more information on equivalent versions of the problem of finding 
a minimum reversing set and for applications. 

Since a minimum reversing set is also a minimum transversal of the cycles, every arc 
in a minimum reversing set is contained in a cycle. In fact, we show in Theorem 6 that 
every arc of a minimum reversing set in a tournament must be contained in some cycle 
on three vertices (a 3-cycle). However, while the largest collection of arc disjoint cycles 
in a digraph provides a nice lower bound on the size of a minimum reversing set, this 
bound is not tight. Kotzig [22] and Bermond and Kodratoff [6] have shown that for 
n 1> 10 the bound is not tight even for tournaments, i.e., for n 1> 10 there exist 
tournaments on n vertices such that the size of a minimum reversing set is strictly 
greater than the largest collection of disjoint cycles in the tournament (see also [7]). 

In Section 2, we review basic results on reversing sets which are useful in the study 
of reversing numbers We also show that the reversing number is well defined. In 
Section 3, we develop some basic bounds on the reversing number, in particular, we 
show that the reversing number of an acyclic tournament on n vertices is an upper 
bound on the reversing number of any acyclic digraph on n vertices. A Hamihonian 
path in a digraph is a directed path which meets every vertex in the digraph once. We 
also show a lower bound of n - 1 on the reversing number of an acyclic digraph on 
n vertices if the digraph contains a Hamiltonian path. Graphs with reversing number 
0 are studied in Section 4. Using a technique to extend a digraph on n vertices to 
a digraph on n + 1 vertices without increasing the reversing number, we show that 
there are connected acyclic digraphs with reversing number 0 for n ~ 7. A parameter 
d(n, r) giving the size of the largest arc set of an acyclic digraph on n vertices with 
reversing number r is also introduced in Section 4. Bounds on din, 1) and din, O) are 
examined. Section 5 shows that the reversing number of an acyclic tournament on 
n vertices is between 2n - 4 log2 n and 2n - 4. Finally, Section 6 establishes bounds 
on the reversing number of arborescences and exact values of the reversing number for 
directed stars, disjoint arcs, alternating paths, complete bipartite digraphs, alternating 
cycles. 

We use the following graph theoretic notation. Any terms not defined here can be 
found in [14] or [26]. A digraph D = (V(D~ A(D)) is a set of vertices V(D) and arcs 
AiD) which are ordered pairs from V(D). For an arc (x,y), x will be called the tail and 
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y the head. The outdegree d~ (v) of a vertex v in a digraph D is the number of arcs in 
D in which v is the tail. For simplicity in notation we will use D to denote the arc set 
A{D) when there is no chance of confusion. Dlx will denote the subdigraph of 
D induced by" the vertices of X ~_ V(D). Recall that the reversal of a set of arcs A is 
the set of arcs A R = { (v, w) ] (w, v) ¢ ,4}. A digraph will be called connected if the under- 
lying graph is connected. A cycle in a digraph is a sequence of arcs 
(Vo, vl },(el, v~), .... (vk, Vo) with all vertices distinct. Such a cycle will be denoted by 
(Vo, v~ . . . . .  vk) and called a (k + 1)-cycle. An acyclic digraph contains no cycles; D is 
acyelic if and only if there is an ordering ~ such that (x,y) ~ D =} ~(x) < ~(y). Such an 
ordering will be called an acyclic ordering. A source {sink) in a digraph is a vertex with 
no incoming {outgoing) arcs. A tournament T is a digraph such that for each pair 
{x,y} E V(T)  exactly one of{x,y) or (y,x) is in T. A tournament is acyclic if and only if 
it has no 3-cycle. Throughout the text, we shall assume that the digraphs are without 
isolated vertices. 

2. Basic results on minimum reversing sets 

The following lemmas regarding reversing sets will be useful in the study of 
reversing numbers. The first three are from [38"1. All follow easily from the definitions 
above. 

Lemma 1 (Younger [38]). l f  F is a minimum reversing set o f  a tournament T then, for 
F' ~_ F, F'  is a minimum reversing set o f T '  = (T  \ B ) u  B ~ where B = F \  F'. 

Lemma 2 {Younger [38"1). l f  a vertex v is a source or sink in a tournament T, then F is 
a minimum reversing set o f  T i f  and only i f  F is a minimum reversing set o f  T \ {v}. 

Recall that an acyclic tournament has a unique acyclic ordering. 

Lemma 3. (Younger [38]). I f  T is a tournament and F is a minimum reversing set such 
that ~(vl) < ~(v,) < -.. < n(vn) is the acyclic ordering after reversal o f  the arcs in F, 
then for any segment vi, vi + l . . . . .  v i +i --" S, FIs is a minimum reversing set o f  T[ s. 

Lemma 1 says that i fF  is a minimum reversing set of a tournament T then for any 
subset F '  of F, if we reverse in T the arcs which are in F but not in F '  the new 
tournament T '  has F '  as a minimum reversing set. If T '  had a smaller reversing set 
B then { F \ F ' ) u B  would be a reversing set of T smaller than F. Lemma 2 states that 
no arc in a minimum reversing set of a tournament T has a tail which is a source in 
T or a head which is a sink in T. Lemma 3 is a direct consequence of Lemmas 1 and 2. 

Lemnm 4. I f  T is a tournament and W is any sub~et o f  the vertices o f  T, then for  
a minimum reversing set F o f  T, the number o f  arcs in F joining vertices o f  W is greater 
than or equal to the size o f  a minimum reversing set o f  Tlw.  
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Proof. The arcs in F with both ends in W form a reversing set of T restricted to 
W. [ ]  

Lemma 5. I f  T is a collection of  arc disjoint cycles in a tournament T, then for each 
reversing set F in T, 

I~i <~ iFI. 

Proof. if Cr~F = 0 for a cycle C in T, then C is a cycle in ( T \ F ) u F  R, contradicting 
the assumption that F is a reversing set. So each cycle contains at least one arc from F. 
Since the cycles are arc disjoint the bound follows. 17 

We have mentioned in the introduction that each arc of a minimum reversing set of 
a tournament T is in a 3-cycle of T. The proof of this is given in Theorem 6. 

Theorem 6. Let T be a tournament and let F be a minimum reversing set of  T. Then every 
arc of  F belongs to some 3-cycle of  T. 

Proof. Consider an arc (y, z) e F. Reversing the arcs of F which do not meet y or  - will 
not affect inclusion of (y,z) in a 3-cycle of T. By Lemma 1, reversing these arcs does 
not affect inclusion of (y,z) in a minimum reversing set. Thus, it is enough to show the 
result for (y,z)e F, F and T such that every arc of F is incident on either y or  z. 
Assume that this is the case. Assume also that the vertices are labeled so that the 
acyclic ordering ~ of ( T \ F ) u F  n is n ( x l ) <  n ( x , ) <  ... < ~(xn). So every arc of 
F goes from xj to xh for j > k. Note that deleting vertices r such that ~(r) < n(z) or 
~(v) > ~(y) will not form new 3-cycles. Thus, we may assume that (y,:)  = (x, ,xt) .  It 
also follows that every arc of F has the form (x~,x,) or  (x,,x~) since arcs (x~,xl) for 
1 < i < j  < n do not meet y = xn or  z - x t .  

For  k = 1, n, let 

Xk + = {(x~,xj)~ T: | < j  < n}, 

X£  = {(x~,x~) ~ T: I < j  < n}. 

Note that the four sets described above are all disjoint and that 
F = X ~ u X ~  + u {(x. ,xt  )}. Also, since all arcs of T which join xi to x,, l < i < j  < n, 
go from xi to xj, it follows that [ T \ ( X  ~ u X ~  ) ' lu (X i ~ u X ~  )K is acyclic with acyclic 
ordering 7t' satisfying ='(x,) < ='(xa) < .-- < 7t'{x,_ t) < ='(xt L Since F is a minimum 
reversing set, we have 

IXi~l + I X ; I  = I X i ~ , x ; I  >>-Iel- IXi-I + I x ; I  + I. 

Thus, since iX ~ I + IX i I + I X~+ [ + I X~- J = 2(n - 2), we have I X ~ [ + I X~ I > 
(n - 2). By the pigeonhole principle, there exists a j with 1 < j  < n such that both 
(x t, x~) and (x~, x,)  are in X ~ u X~ = T. Then (xt,  x~, x,)  is a 3-cycle in T containing 
(x,,.~t). [ ]  
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We have noted that minimum reversing sets arc necessarily acyclic. The next 
theorem shows that every acyclic digraph arises as a minimum reversing set of some 
tournament. 

Theorem 7. Let D be a digraph. The  following two conditions are equivalent: 
(i) D is acyclic. 
(ii) D is a minimum rerersing set o f  some tournament. 

Proof. If D contains a cycle then so does DR; thus every reversing set must be acyclic. 
Conversely assume that D is acyclic. Assume also that the vertices V(D)= 
{u~,u,. . . . . .  u,} are labeled so that there is an acyclic ordering ~ of D satisfying 
~(u~ ) < ~(u,) < ... < ~(u,). We construct a tournament T with minimum reversing 
set D as follows, Let V ( T )  = V ( D ) u  {clj: (ui, uj) ¢ D}, Let T '  be an acyclic tournament 
on V ( T )  with acyclic ordering :r ° satisfying : t ' (u ,)< ~°(u~-i)< .-. < ;z'(ut) and 
:r'(uj) < :r'(t~j) < ~'(ui) for all vii. This can be done since r o e  V ( T )  ~ (ui, u./)ED 

i < j .  Thus, corresponding to each arc (ui, u~) of D there is an extra vertex vi~ which 
falls between the ends of the arc in the ordering ~'. 

Note that D ~ ~_ T ' ,  so we can define T = ( T ' \  DK)u D, i.e., T '  = ( T \  D ) u  D ~. Since 
T '  is acyclie, D is a reversing set of T. Also, z = {(u~, uj, v~j): (u~, uj) ~ D} is a collection 
of arc disjoint 3-cycles in T with I~[ = IDI. Therefore, by Lemma 5, D is a minimum 
reversing set of T. [ ]  

It follows from Theorem 7 that the reversing number riD) is well defined and that 

riD) ~< IDI. (]) 

We use the notation [D[ to indicate the size of the arc set of D when there is no chance 
of confusion. This notation is consistent with the idea that we are viewing the arc sets 
of the digraphs as reversing sets. 

Given an acyclic digraph D and tournament T, if D is a minimum reversing set of 
T and no tournament with fewer vertices than T has D as a minimum reversing set 
then we say that T realizes D. If T realizes an acyclic digraph D, then r(D) is the 
number of vertices in V ( T ) \ V ( D ) .  Observe also that if D is an acyclic digraph, 
T a tournament that realizes D and ~ an acyclic ordering of ( T \ D ) u D  a, then for 
every arc (x,y) of D, o(x) > ~(y) + 1. 

3. Bash: results on reversing number 

in this section we make use of basic results on minimum reversing sets to establish 
some elementary facts about the reversing number. We first get a bound on the 
reversing number of an acyclic digraph in terms of the reversing number of a tourna- 
ment by using a more general bound on the reversing number of subdigraphs. 
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Theorems 8. Let D' ~_ D be acyclic digraphs on n vertices. Then r(D') <<, r(D). 

Proof. By Lemma 1, if T is a tournament having D as a minimum reversing set then 
there is a tournament T '  on the same number of vertices having D' as a minimum 
reversing set. [ ]  

Note here that it is important that both D and D' have the same number of vertices; 
otherwise Theorem 8 is not true. For example a single arc has reversing number 
1 (Theorem 13), but many nontrivial acyclic digraphs have reversing number 0 (The- 
orem 17). 

Corollary 9. For an acyclic digraph D on n vertices, we have riD) <~ r(T,), where 7", is 
the acycfic tournament on n vertices. 

Theorem ! 8 will give some bounds on the reversing number ofacyclic tournaments. 
These together with Corollary 9 will give general bounds on the reversing number of 
any acyclic digraph. 

We next take note of several basic results for getting bounds on the reversing 
number of an acyclic digraph D. 

Lemnm 10. For an acyclic digraph D, r(D) = r(DK). 

Proof. For any tournament T, ( T \ D ) u D  ~ is acyclic if and only if ( T R \ D ~ ) u D  is 
acyclic. Thus D is a minimum reversing set of T if and only if D R is a minimum 
reversing set of T R. I"1 

[+emma II .  Let D be an acyclic digraph and let T realize D. I f  n(v t )<  n(v2) 
< . - - < n ( v , )  is the acyclic ordering of  ( T \ D ) u D  K, then for any segment 

S = v~, v++t . . . . .  v++j, the number ofnon-D vertices in S is greater than or equal to the 
reversing number of  Dis. 

Proof. By Lemma 3, Dis is a minimum reversing set of TIs • Thus TIs has at leas~ as 
many non-D vertices as a tournament realizing Dis. I-3 

Let D be an acyclic digraph with vertex set V. For some e, E V, suppose V\  {v} can 
be partitioned as V't u V'., such that in every acyclic ordering of D, the vertices of 
V'~ come before v and the vertices of V[ come after v. Suppose also that throe are no 
arcs from V'~ to V~. Then v will be called an order splitting vertex of D and V'I is its 
opening set and V~ its closing set. By the definition of aeyclic orderings, there are also 
no arcs from V~ to V°~. 

Lemma 12. l f  v is an order splitting vertex of  an acyclic digraph D, and V'l and V'2 its 
openim3 and closing sets, respectively, then r(D) = r(Dl ) 4. r(D2), where DI and D2 are 
the digraphs induced by VI = V~ u{v} and V2 = V'2u{v}, respectively. 
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Proof. Let T realize D and n be an acyclic ordering o f ( T \ D ) u D  a. Let Ws be those 
vertices x of V(T) with n(x) >~ n(v) and Wa the vertices .x of V(T) with ~(x) ~< x(v). 
Note that v is in both ofthesv sets and that Vs =- Ws and V2 ~ W2. By Lemma II ,  
r(Ds)<~lWl\Vll and r(D2)<~IW2\V2[ and so r(Ds)+r(D2)<~lWs\Vll  
+ IW2\  V21 = r(D). 

To show the reverse inequality, we construct a tournament T '  on 
r(D~) + r(D2) + I V(D)I vertices having D as a minimum reversing set. Let Tt realize 
Dt and T2 realize D2. For i = 1,2 denote the vertex set of Ti by Wi. We can choose 
WI and W2 so that Wl\{t,} and Wa\{v} are disjoint. Then (Y l \Dl )uD~ is an 
acyclic tournament. Let n' be the acyclic ordering of ( T, \ DI ) u D~ and let w denote 
the (unique) source in (T , \Dt)~D~.  If w~ V(Ts) \VI ,  then by Lemma 3, Dt is 
a minimum reversing set of T~ \ {w}, contradicting the assumption that T~ realizes D~. 
If w ~ V'l then the reverse ~ of the ordering on Vt defined by n' is an acyclic ordering 
of Dt for which v is not the last vertex. Since there are no arcs between V'~ and V~ in D, 
we can combine ~ with any acyclic ordering (with respect to D21v~) of V~ to follow #. 
This gives an acyclic ordering o l d  for which not all the vertices of V'~ appear before v, 
contradicting the fact that V't is the opening set for the order splitting vertex v. Thus 
the source w in (TI \Dt )uD~ must be t,. In a similar manner, it can be shown that 
(T2\D2)uDa2 is an acyclic tournament with v as a sink. 

Let T '  be the tournament formed by joining T~ and Y 2 at v with all arcs between 
T t and  T 2 going from T2 to  T l . Note that the arc set of T '  can be partitioned into 
three parts, the arc set of Tt ,  the arc set of T 2, and the set of arcs between W ~ \ {v} and 
W,\{v},  all of which are directed from W2\{v} to Wl\{v}.  

Since there are no arcs between V'~ and V'.,, the arc set of D is partitioned into the 
arc set of Dt and the arc set of D2. So D = D t U D2 and [D] = I Dt I + I D2 [ since these 
sets are disjoint. Consider T = (T ' \D)uD l. Since D/ is a reversing set of Ti for 
i = 1,2, TIw, and TIw, are acyclic. (This uses the fact that the arc sets of Tlw, and 
TIw~ are disjoint.) Since also all arcs in T between W2 and Wt are directed from W2 
to W t, T is acyclic. Thus D is a reversing set of T ' .  

Finally, we show that every minimum reversing set of T '  has size IDI, and thus that 
D is a minimum reversing set of T'. If F is a minimum reversing set of T',  then 
IFIw, I ~> IDa I by Lemma 4 and the fact that Dt is a minimum reversing set of T'lw,. 
Similarly, IFIw~I>.ID2I. Since the arc sets FIw, and Flw~ are disjoint, 
IFI 1> IFIw,I + IFIw~l t> IDtl + IDa1 = IDI. The last equality follows since there are 
no arcs between V'~ and V~ in D. Thus, D is a minimum reversing set of T '  and 
r(D)<~ IDtl + IDa1. [ ]  

Recall that the directed path P~ on n vertices is the digraph with vertex set 
{el . . . . .  v,} and arc set {(v~,vi+l):i= 1 . . . . .  n - 1}. 

Theorem 13. Let P~ be the directed path on n vertices. Then, r(P,) = n - 1. 

Proof. A single are P2 has r(P2) = 1 since it is not a minimum reversing set of itself 
(the only tournament on 2 vertices) an,.~ it is a minimum reversing set of a 3-cycle. By 
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repeated application of Lemma 12 the result follows since every vertex of P,  except v~ 
and v. is order splitting. [ ]  

Corollary 14. l f  D is an acyclic dioraph on n vertices containino a directed Hamiltonian 

path, then r(D) >1 n - 1. 

Proof. Apply Theorem 8 to the result of Theorem 13. [2] 

Note that if a digraph has a unique acyclic ordering, then it contains a directed 
Hamiltonian path. Then by the corollary, a digraph on n vertices with a unique acyclic 
ordering has reversing number at least n - 1. However, when there is not a unique 
acyclic ordering, the reversing number can be small. The next theorem states a neces- 
sary condition for the reversing number to be 0. 

Theorem 15. I f  r(D) = O, then D has at least two distinct sources and at least two 

distinct sinks. 

Proof. Let V(D) = {v,,v-, . . . . .  vn}, let T realize D, and let n be the acyclic ordering of 
T '  = ( T \ D ) u D  K. Note that (v+,vj) .-= D m n(r~) > n(lg). Since r{D) = 0 and T ° is 
acyclic, we may assume that n(v+} = i, i = !,2 . . . . .  n. Thus, r~ is a sink of D. if 
(v2, vj) ~ D thenj  = 1. However, if(v2, v, ) ~ D then by Lemma 3 applied to rl ,  v: = S, 
Dis = (v:, +,t ) is a minimum reversing set of the (acyclic) tournament on 2 vertices, 
a contradiction. Thus v., must also be a sink of D. By a similar argument there must be 
at least two distinct sources. [ ]  

4. Small revev~ing numbers 

We will next consider the smallest reversing number among digraphs on n vertices. 
For n t> 2, let rn ~- min r(D), where the minimum is taken over all acyclic digraphs 
D on n vertices having no isolated vertices. Also for n ~> 2, let r~, = rain r(D), where the 
minimum is taken over all connected acyclic digraphs D on n vertices. Clearly wc have 
r, ~< r~, for every n ~ 2. 

In order to .calculate these parameters we introduce conditions under which 
extending certain digraphs will produce new digraphs without increasing the revers- 
ing number. These conditions also prove useful in examining the reversing number in 
general and for special classes of digraphs. Let D be an acyclic digraph, let T realize 
D and let ~ be a collection of [DI arc disjoint cycles in T. (Note that it is not necessary 
that a T realizing D contain such a collection 3.) Also let $ ~  {(x+,y~)~T: 
i = l, 2 . . . . .  k } be a collection of arcs from T none of which is an arc of one of the cycles 
in ~ and assume that S is vertex disjoint, i.e., the x~ and y+ are all distinct. Let z be any 
element not in V(T) .  We dcfic,¢ two new digraphs: D', the sink extension o l D  with 
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respect to S, and D", the source extension o f  D with respect to S, as follows: 

V(O') = V ( O " ) =  V(O)u{z},  

A(D') = A(D)w{(z,x~): i = 1,2 . . . . .  k}, 

A(D") = A(D)u{(y~,z): i = 1,2 . . . . .  k}. 

We also define T ' ,  the D' extension of  T with respect to S, and T",  the D" extension of  
T with respect to S, as follows. Let M = {x ~ . . . . .  xk } u {y~ . . . . .  Yk } be the set of  vertices 
which are endpoints  of  the arcs in S. Let T '  and T"  have vertex sets 
V(T ' )  = V(T")  = V(T)w{z}  and arc sets 

A i T ' )  = A(T)u{(z,x~),(yi , :):  i = 1,2 . . . . .  k}u{(v,z):  v~  V ( T ) \ M } ,  

A(T")  = A ( T ) u { ( z ,  xi),(yi, z): i = 1,2 . . . . .  k}u{(z ,v):  v ¢  V ( T ) \ M } .  

Finally,  we define the extensions 3' and  ~" of 3 with respect to  S by 

3" = 3" = 3u{(x~, y~,z): i = 1,2 . . . . .  k}. 

Lemma 16. Let D be an acyclic digraph with reversing number r(D), and let T realize D. 
Assume also that there is a collection 3 of[ DI arc disjoint cycles in T and a set S o f  vertex 
disjoint arcs in 7", none o f  which is an arc o f  a cycle from 3. Let D' be the sink extension o f  
D with respect to S, T '  be the D' extension o f T  with respect to S, and z' the extension o f  
3 with respect to S. Also, let D" be the source extension olD with respect to S, T"  be the 
D" extension o f  T with respect to S, and 3" the extension o f  3 with respect to S. Then the 
.following hold: 

(i') 3' is a collection of[D[ + iS[ arc disjoint cycles in T' ,  
(ii') D' is a minimum reversina set o f  T' ,  

(iii') r (D') ~< r(D), 
and 

(i") 3" is a collection oflD[ + IS[ arc disjoint cycles in T °, 
(ii") D" is a minimum reversing set o f  T", 

(iii") r(D') <~ r(D). 

Proof. Let S = { (x .y i )  ¢ T: i = 1 . . . . .  k}. The cycles added  to  3 to obta in  3' = 3" are 
arc  disjoint  from 3 by the choice of  S and since z~V(T) .  Thus [3'[ = [3"[ = ]3[ + IS]. 
Also by the definitions of  T ' ,  T"0 3', and 3", each of the cycles in 3' is in T '  and  each of  
the cycles of 3" is in T" .  Thus (i') and (i") hold. 

Note  that  ( T ' \ D ' ) u ( D ' )  a is acyclic since ( T \ D ) u D  ~ is acyclic, and  that  z is a sink 
in ( T ' \ D ' ) u ( D ' )  R. Analogously,  ( T " \ D ' ) u ( D " )  ~ is acyclic with source z. Thus D' is 
a reversing set of T '  and  D" is a reversing set of T". By Lemma 5 applied to  3' and 3", 
minimum reversing sets of T '  and T"  have size at  least [ 3'[ and  [ 3"[, i.e., each has size at  
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least IT] + [Si. Then, since D' is a reversing set of size [D'] = ID[ + [SJ = 
[~l + IS[ -- [~'J, D'  is a min imum reversing set of  T '  and  (ii') holds. Similarly, D" is 
a min imum reversing set of  T "  and ( i i ' )  holds. 

Note  that  I V ( T ' ) J  = [ V ( T " ) [  = I V ( T ) [  + 1. Since D' is a minimum reversing set of  
T ' ,  r(D')  <~ [V(T ' ) i  - I V(D')[  = [ V ( T ) I  + 1 - ([ V(D)[ + 1) = r ( D ) ,  and similarly 
r(D") <~ r(D). So (iii') and  (iii") hold. [ ]  

This lemma also provides a foundat ion for deal ing with various special classes of 
digraphs.  While  it is not  difficult to construct  d igraphs  with n />  7 vertices with 
reversing number  0, we will prove  the result for a l ternat ing paths  as an example  of  the 
use of  Lemma 16 in deal ing with special classes of  d~graphs considered in Section 6. 

Determining rn and r~, for n < 7 requires some case analysis.  In order  to  do  this we 
review a result of  Bermond and Kodratoff[6]].  We  look at  the following upper  bounds  
on the, size of  a minimum reversing set of a tournament  on n vertices. Let m~ denote  the 
max imum size of  a min imum reversing set, where the max imum is taken over  all 
tournaments  on n vertices. Bermond and Kodra to f f  [6]] show that  m, = 0, 

m3 = m4 = 1, ms -- 3, m 6  ~ 4, and m7 = 7. 

Theorem 17. rz = f~ = 1; r3 = r'3 = 2 :  r4 = r'4 = rs = r's = 1: r6 = O, r'6 = I and f o r  

n ~ 7 ,  r , = r ' ~ = O .  

Proof.  We  first consider  cases when n is small. 
Case  n -- 2: The only acyclic d igraph on 2 vertices with no isolated vertices is an arc 

which is not  a min imum reversing set of  itself and  is a min imum reversing set of  
a 3-cycle. Thus r., = r~, = I. 

Case  n = 3: Every d igraph on 3 vertices with no isolated vertices has at  least two 
arcs and is connected.  So r3 = r~. Since m3 = n)4 = I there is no tournament  on 3 or  
4 vertices having a connected d igraph on three vertices as a min imum reversing set. 
Fig. I shows a tournament  on five vertices, with a connected d igraph on three vertices 
as a min imum reversing set, so r3 = r~ = 2. 

Case n = 4: An acyclic d igraph on 4 vertices with no isolated vertex has at  least 
2 arcs. Since m4 = 1, we have r,; I> 1 and f4 ~> 1. Fig. 2 shows a connected d igraph on 
4 vertices and a tournament  realizing it, so r,, = £, = 1. 

Fig. i. A tournament realizing a connected digraph on three vertices, containing disjoint cycles (vl,v~,x2) 
and (r2, v~. x~ ). 
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~ 
~Vl 

Fig. 2. A tournament on five vertices realizing a connected digraph on four vertices, containing disjoint 
cycles (c:,r~,r~L (r~.r~,x) and (r~,r~,x,v.~), 

Fig. 3. A regular tournament on five vertices. 

C a s e  n = 5: Any aeyclic digraph on 5 vertices with no isolated vertex has at least 

3 arcs. Recall that the outdegree d~, (x) of vertex x in T is the number of arcs (x,j) ~ T. 
Consider any tournament T on 5 vertices. If some vertex x in T has outdegree 4 then 
x is a source and by Lemma 2, a minimum reversing set of T is a minimum reversing 
set of T\{x}.  Since m~ = 1, the maximum size of a minimum reversing set of such 
a tournament is I and thus T cannot realize a digraph on 5 vertices containing no 

isolated vertex. 
Consider tournaments T on 5 vertices having no vertex with outdegree 4 and some 

vertex x with d~ (x) ~ 3. Then reverse the arc for which x is the head to obtain a new 
tournament T '  which has a vertex of degree 4 and, as above, a minimum reversing set 
of size at most 1. Thus T has a reversing set of size at most 2. Then a minimum 
reversing set of T has size at most 2 and 7' cannot realize a digraph on 5 vertices. 

Finally, if T is a tournament on 5 vertices such that d~ {x) <~ 2 for all vertices x in T, 
then T is a regular tournament with all 5 vertices having degree 2. All such tourna- 
ments are isomorphic to the tournament shown in Fig. 3. It is straightforward to show 
that all of its minimum reversing ~cts have three connected arcs and hence contain an 
isolated vertex. Thus rs ~ 1 and r~ ~ I. Fig. 4 gives an example to show that 

r5 ~ r[ ~ 1. 
C a s e  n = 6: Fig. 5 shows that r6 = O. Any connected digraph on 6 vertices has at 

least 5 arcs and since m6 -~- 4, no tournament on 6 vertices realizes a connected 
digraph on 6 vertices. Thus r'6 ;~ I and Fig. 6 gives an example to show that r~, = l. 
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Fig. 4. A tournament on six vertices realizing a connected digraph on five vertices, containing arc disjoint 
cycles (v:.v4,v3), O,~,r~,x), (v~ .rs,r.,) and (r3,rs,x). 

Vl 

Fig. 5. A tournament on six vertices realizing a digraph on six vertices, containing arc disjoint cycles 
(r3,r~.,rs). (vl,ro,r2). (r.,,rs. r.t) and (rj.r.~,r3}. 

i V2 t V !  

Fig. 6. A tournament on seven vertices realizing a connected digraph on six vertices, containing arc disjoint 
cycles (r~.rs,r.t). (r~,r.~,x), (r:,r~,r~), (rl ,rs,X) and (t't,r6,r.~). 
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Case )1 = 7: We exhibit  in Fig. 7 a connected acyclic d igraph D7 on 7 vertices, a long 
with a T having D~ as a reversing set, and a collection z of 6 = [D~[ arc disjoint cycles 
in T. Thus r(D7) = O. This shows that  r~ = r'7 = 0. 

Case n >~ 8: We will show that  a l ternat ing paths  on n vertices, n 1> 8, ha,,e 
reversing number  0. An al ternat ing path  is a d igraph based on a path  graph. That  is, 
an al ternat ing pa th  is the following digraph A~ or  its reversal: V(An) = {vl . . . . .  v, } and 
the arc set A(A,)  = {(vi,vi-1), (t,~,v~+ 1): i is odd,  and  both vertices are in V}. Recall 
also that  Lemma 10 says that  r(D) = r(D R) for all D. Thus, in order  to prove the result 
for all a l ternat ing paths  it is enough to consider  A, .  

By our  convent ion of denot ing the size of the arc set by ]AR[, we have ]A,[ = n - 1. 
Fig. g exhibits a tournament  T(Ag) with As as a reversing set. This tournament  
contains  a set ~ of seven arc disjoint  cycles and so, by Lemma 5, As is a minimum 
reversing set of  the tournament  and r(As) = O. 

Note  that  (vg, t'4) ~ T(As)  and this arc is not  an arc o f a n y  cycle in ~s. Denot ing the 
new vertex z in the sink extension by vg, the sink extension of As with respect to 
S = (v~,t'4) has vertex set V(Ag)u{t '9} and arc set A(Ag)u{(v9,vg)}.  Thus, the sink 
extension is Ag. By Lemma 16, r(A,)) <<, r(As) = O. So r(Ag) = O. 

F o r  n 1> 9 we prove by induct ion that  there exist tournaments  T(A,)  and collec- 
t ions 3, of arc disjoint  cycles in T(A, )  satisfying: 
(at V ( T ( A , ) ) =  V(A,). 
(b) T(A~) has A~ as a minimum reversing set. 
(c) I~1 = n - 1. 
(d) i f n  is odd,  there is exactly one arc (t'~,t,n- t) in T(An) with v~ as its tail, and for 

n even, there is exactly one arc (vn- ~,t'~) in T(A~) with v~ as its head. 
(e) There is exactly one cycle in r~ containing the vertex v~. This is (v~_ ~, x, t,~) if n is 

odd,  and (x, v~_ ~, v~) if n is even for some x ~= v~, v,_ ~. 

Fig. 7. A tournament on seven vertices realizing a connected digraph on seven vertices, containing arc 
disjoint cycles (~:l, to, r~), (v2. v~. t'o ). (r4. rT. vs) (re, rs. r3), (r'~, r6. va ) and (v i. r4, rz). 
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I v5 

Fig. 8. A tournament realizing As and the set ts --- (v~,v:.v6). (vs,t':, va). (vs.r+,vz). (Vs,V+.t,~). (vs.r~,vs) 
(vT, v6. v~) and (vT, t'o, v~ ). 

By (a), [V(T(A,))I -- I V(A,)I. By (b), r(A~) <~ I V(T(A,)}[ - I V(A.)I = O. So, proving 
that (a) and (b) hold for all n I> 9 will complete the proof. 

Let T(A,~) be the D' = A9 extension of T(As) and 39 the extension ofzs,  both with 
respect to (vs,v+). By the definition of the D ° extension T(A9) and since 
V(T(As))  = V(As), we have V(T(Ag)) = V(Ag). So (a) holds. By Lemma 16, T(Ag) 
has A9 as a minimum reversing set. So (b) holds. Also, since [ssl = 7 and by the 
definitions of the D' extension T(Ag) and the (v,, v+) extension 39 of 38, it is easy to 
check that (c)-(e) hold for n -.-- 9. 

Assume by way of induction that the result holds for n. Consider n + 1 even (and 
thus n odd), n + 1 >~ 10. By (e), and since I V(T(A,))I >>. 3, there exists a vertex y # x 
which is not on the unique cycle (v,- ~, x, v,) ~ z, containing vn. By (d), (y, v,) ~ T(An) 
since y ~ v,_ s and (v,, v,- 1 ) is the only arc in the tournament with v, as its tail. By (b), 
r(A,)<~ I V ( T ( A , ) ) I - I V ( A . ) I  =0 .  Since the reversing number is nonnegative, 
r(A,) = 0 and thus T(A,) realizes A,. By (c), [~1 = n -- 1 = IA,]. Thus, T(An) and 3, 
satisfy the conditions necessary to take the source extension of A, with respect to (3, v,}. 
This source extension D" of An with respect to (y r , )  is A,+I. This follows since if we 
denote the new vertex in the extension by v,+ 1, the new arc is (v,, v÷ 1) and since n is odd. 

The D" = A,+ 1 extension T(A,+ 1) of T(A,)  has A,÷ ~ as a minimum reversing sei 
by Lemma 16. So (b) holds. By induction V(T(A,))  = V(A,). Then by the definition of 
the D" = A,+I extension, V(T(A,+ t)) = V(A,+ l) and (a) holds. 

Additionally, from the construction of the tournament T(An+ s), this tournament 
contains exactly one arc (v,,v,÷ 1) with v,+ t as its head. So (d) holds. Finally, the 
extension of 3, with respect to (y, v,) is ~,+ l = ~ u  {(y, +'~, v.+ ~)} and the new cycle is 
arc disjoint from the cycles of 3,. So, [3,+11 = Ir.I + 1 = n. The last equality follows 
by induction. So (c) holds. By construction, z,÷l has exactly one cycle (y,v,,v,+ 1) 
containing the new vertex vn ÷ t. Thus (e) holds. 
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In a similar manner, for n + 1 odd, by (d) and (e) for n, there is a vertex y in 
V(T(An))  such that Ivn~y) is an arc in T(An) and such that (vn, y) is not contained in 
any cycle olin. By (c) and the fact that in) and (b) imply that TiAn) realizes An, the sink 
extension of An with respect to (vn, y) is defined. Then this sink extension of A~ with 
respect to (vn,y) is A,+ ~ and in a manner similar to the case when n + I is even, it can 
be checked that the D' = An+ ~ extension T(A,+ ~) of TiAn)  and the extension ~n+ ~ of 
~n, both with respect to (vn,.v), satisfy (a)-ie). [ ]  

An interesting question is to determine the largest number of arcs a connected 
digraph on n vertices with reversing number 0 can have. A similar question can be 
asked for reversing number r. To study this we introduce the parameter 
din, r) = maxlAiD)l, where the maximum is taken over all connected acyclic digraphs 
with I V(D)[ = n and r(D) = r. If no such D exists for a given n and r, then we say that 
d(n, r) does not exist. 

Since we are considering connected digraphs on n vertices, n - 1 ~< d(n, r) <~ (~). 
By Eq. (1), d(n, r) >. r. Since a minimum reversing set of any tournament contains at 
most half the arcs in the tournament, din, r) <. ½('~'). Thus we get 

m a x { r , n -  1} <<.d (n , r )<~min~ \  , . (2) 

Corollary 9 and Theorem 18 (below) show that d(n,r) is undefined for r > 2n - 4. By 
Theorem 17, din, 0) is defined if and only if n 1> 7. 

Lctf(n) be the largest k such that every tournament on n vertices contains an acyclic 
digraph with k arcs. It appears that upper bounds on f in)  might provide graphs with 
reversing number 0 and a large number of arcs, since there exists some tournament 
with n vertices containing no acyclic digraph with f ( n ) +  1 arcs, i.e., minimum 
reversing sets of this tournament have at least (~:) - f ( n )  - 1 arcs. The upper bound 

f (n)  <<. ½(~) + cn 3/2, c constant, determined by Erdfs and Moon [I0] and Spencer [33], 
would then give digraphs with reversing number 0 and ½(~) - cn 3/" arcs. However, tiffs 
reasoning does not necessarily work since we assume that our digraphs are connected 
and have no isolated vertices, while the digraphs obtained as minimum reversing sets 
of tournaments providing the upper bounds on fin) may have isolated vertices. 

Making u__se of Lemma 16, we can show that for n I> 7, din, 0) ~. [" (n - 1)-'/:~ ] where 
= 5 + x/21 (see a preliminary version of this paper, [3]). As suggested by a referee, 

making use of Steiner triple systems, one can show din, O) >i nln - 1)/6 at least for 
n -= 1, 3 (rood 6). We are also able to show, using a particular"bipartite" digraph, that 
( n2 + n)/4 >>. din, 1) 1> in" + 2n)/8 (again, see [3]). 

5. AcycH¢ lomnmn~ts 

The reversing number of acyclic tournaments is important since it gives an upper 
bound on the reversing number of general digraphs as noted in Corollary 9. 
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Theorem 18. For the acyclic tournament T .  on n vertices, 2 n - 4 1 o g z n  ~< 
r(T.)  <~ 2n - 4. 

Proof. In this proof, all logarithms will be base 2. Let T, be an acyclic tournament 
with vertex set V ( T , ) =  {vt,v2 . . . . .  v,} such that the acyclic ordering of T,  is 
~'(v.) < n'(v._ t) < "'" < n'(vt). 

In order to obtain a lower bound on the reversing number of the acyclic tourna- 
ment T, on n vertices we consider a smallest tournament T(T . )  having 7". as 
a minimum reversing set. Since 7". is a minimum reversing set of T ( T . k  the acyclic 
order n of T(T . )  after reversal of tbe arcs in 7", satisfies n(vt) < n(vz) < .-. < ~(v.). 
By Lemma 3 we may assume that for all vertices u in T(T.) ,  ~(vt) < ~(u) < n(v.) since 
otherwise there would be a smaller tournament having T. as a minimum reversing set. 
Denote the extra vertices (those not in 7".) of T(T , )  by u o where n(vi)< 
n(u o) < ~(v~+ i) for I g i < n a n d ,  for a given i, ~(u o) < n(uo.) for I ~<j < f  ~< xi.Thus 
we have denoted the number of extra vertices between v~ and v~+ t in the acyclic order 

by x~. Using this notation, the reversing number of T, is ~ ,~  ~ x,. 
Recall that the backwards arcs relative to an ordering ¢r in T(T , )  are arcs 

(y,z) ¢ T(T,)  with a(z) < ~r(y). For any ordering ~ of the vertices of T(T , )  the numbe~ 
of backwards arcs relative to a is at least as large as the number of arcs in 7",, i.e., at 
least n(n - 1)/2. This holds since 7", is a minimum reversing set of T(T,) .  By Lemma 
3 a similar condition holds for certain subtournaments of T(T,}.  For any ordering 
¢r of the vertices of T(T , )  restricted to a segment (in the order ~) V~k = 
{v~,vj+ t . . . . .  vk}u{u,~: j ~< r < k, 1 ~< s ~< x,}, the number of backwards arcs in the 
segment relative to ¢r is at least as large as (k - j + 1 )(k - j)/2, the number of arcs in 7", 
restricted to the segment. 

We make use of one "bad" ordering to get a set of inequalities on the x~ which can 
then be combined to get a lower bound on the reversing number. This ordering 
applied to the subtournament of T(T , )  induced by V~ places all the extra vertices 
u,~ to the "right" or "left" (in their natural order consistent with n), and the vertices v, 
which appear in T, in the "middle" in the acyclic order n' of T.. That is, for a given 
j <k ,  forO <~a,a' < k -  1,1 ~ b  <~ x~+., ! <~ b' <<.xj+~.andforc = j , j  + 1 . . . . .  k, the 
ordering a on V~k is given by 

a(U,b) < a(u,.v)c>a < a' or a = a' ~nd b < b', 

ff(u(l+a)b) < ~(vc)'c~a ~ [~- --2 - 1  ] 

ti(v,) < a(v,.)~*c > c'. 

Fig. 9(a) shows the backwards arcs in the subtournament of 7", on V~k relative to the 
ordering ~ and Fig. 9(b) shows the backwards arcs in the subtournament of T~ on 
V~k relative to the ordering a. From Fig. 9(b) (or from the definitions of T,,  n and a), it 
can be checked that the backwards arcs in T, restricted to V~ are: for each 
0 <~ a ~< L(k - j  - 1)/2/, (Vc,U(~+,)b) for j  ~< c ~<j + a and I <~ b ,q< xj+, and, for each 
L ( k - j -  !)/2.] < a < k - - j , ( u o + a ) b . , v c ) f o r j + a +  1 ~<c<~kand 1 ~<b~<x~+a. 



J.-P. Barth~lemy et al. / Discrete Applied Mathematics 60 (1995) 39-76 

k 

uji uo+l ) i  u~i  U(k-l)i 
i r -h. . .xj  i = h . .  ,xi.t i l l , . . , x {  i=l,.-,x~-I 

(a) T(T.),[r]~ under the ordering =. 
& 

. . . . . .  .n  °.. 

uji u(i+l)i u{i u{{+t)i u0~-l)i 
i= l , . . .x j  i=lt..,xjo~ i=L. . ,x{  i=l , . . ,x{. t  i=l, . . ,x~.l 

(b) T(T,) Iv0 under the ordering a .  

Fig. 9. Backwards arcs in *.he subtournament  of T ,  on V~ relative to n and o.{All arcs which are not shown 
are directed from left to right in the figure.) 

Making use of the fact that for each i, there are xi vertices ui~, we have the following 
count on the number z of backwards arcs relative to ~r. For given k, j, wc have 

~ - j - i  

L " - ~ J J  . . . . . .  k - j - I  ~ .... 
~ =  E E E l +  E E l  

a=O c=jb=I "=L~J+'c='+'+'b=' 

L ~ J  ,- ,- ,  
= Y. (a + l)x~+. + ~ ( k - j -  a)x~+. 

,=o - ° l ~ / + ,  

L ~ J  +, F ~ - I  
= T. ~x.,_,+ T. ~- , .  

i= I  i=1 
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In the last line, we have made the change of counters i = a + 1 in the first sum and 
i = k - j  - a in the second sum. When k - j  is even, both sums have the same number 
of terms. Combining these we get 

k-) 
-./- 

z =  Y i(x~÷,-i +xk-~). 
i=l 

When k - j  is odd, the first sum has one more term than the second. Writing the last 
term of the first sum separately and combining the remaining terms from both sums, 
we get 

I k-'-~l' k - j  + l z = i(xj+~-i + x h - i )  + - - - T - - - x j + ~ - ~ - l ~ / z .  
m 

Since the number of backwards arcs relative to o is at least as large as 
(k - j  + l)(k - j ) /2 ,  we get the following inequalities: 

A -...~j 

~.~ i(xj+i_ 1 .i. xh_i) > (k  f o r k - j  even, (3) 
~ j ~ l)(k ~ j~  

i~l 2 

[ ..... 1 "-7-., k - j  + I >~ (k - j  + ll{k - j )  
i~l ~ i(xj+i-i + x h - J J + - - - T - - - - x ~ + c ~ - ~ - l ~ / , ~ ,  2 

for k - j  odd, (4) 

whore the first term in the sum is interpreted as 0 if k - j  = 1. 
At this point, we have inequalities (3) and (4) which provide lower bounds on 

expressions involving the number of extra vertices x~. By taking appropriate positive 
multiples of those inequalities and then summing we can obtain an inequality which 
provides a lower bound on ~ x h ,  which is the reversing number. In order to 
describe the multipliers for the inequalities, we will recursively construct a collection 
of inequalities (3) and (4) for which the number of copies of each particular inequality 
will provide the multiplier. 

For a given p ~- Po, we consider the collection ~¢~, of inequalities defined as follows. 
Include an inequality for each 0 ~< h ~< [. Iogp J. To obtain the hth inequality, define Ph 
recursively by Ph ~- [. P~h- 1~/2.~ Setj  -~ 1 and k = Ph. Then use inequality (3) if k - j is 
even, and k # j ;  the empty inequality 0xl ~ 0 ifk = j  and the inequality (4) ifk - j  is 
odd, in each case multiplied by 2 h. 

For example, with p -~ 4 the inequalities in ~,L are 

. x l + 2 x 2 + x 3 ~ t ~ = 6  (h = 0}, 

2(x~ ~ L ~  = 1) (h = 1). 

(There is no inequality for h = 2, since here p: = 1, and j = k = 1.) 
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Summing the inequalities in ~ we obtain an inequality of the form 

p - I  

Y e.x., .>f~,). 
m = l  

We demonstrate by induction the following bounds on the values of the coefficients cm 
and the right-hand sidef(p). 
[a) c~ <~ p - m. 
{b) f(p) ~ p2 _ 2plogp. 

For p = 2, 3 one can easily check that (a) and (b) hold. For p = 4, summing the 
inequalities noted above gives 

3x~ + 2x: + x3 ~ 8, 

which satisfies (a) and (b). 
Assume that (a) and (b) hold for numbers smaller than p. Given p ~ 5 the collection 

~ contains one copy of(3) or (4) forj  -- I and k = p and for each inequality appearing 
in ~Lri'J the inequality multiplied by two. 

Thus, for m >Lp/2 . ] ,  the coefficient c ,  is p - m by construction. For m <~Lp/2.], 

Here the term in brackets follows by induction on the inequalities in ~Lp/2j which 
are multiplied by two, and the final m is the coefficient in the new inequality. 
{Note that in the new inequality, we have k ~ j  since k = p,.) This proves that (a) holds 
for all p. 

Now, we show (b). We also have thatf(p)  ~> 2f(Lp/2 ]) + p(p - 1)/2. The first term 
follows from the inequalities in ~Lp/2J which are multiplied by two, and the final term 
fi'om the new inequality with j = 1 and k = p. We now use the inductively assumed 
bound for f (L p/2 ]). For p even, p ~> 6, we get 

f(P) ~ 2 (I~J~- 2 l~Jl°g I-~I)+ (P)(P - 1)2 (5) 

= 2  - p ( l o g p - l )  + 2 2 

= p" - 2plogp + ½p 

~> p2 _ 2plogp. 
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For p odd, p i> 5, we get 

+ 2 (6) 

p~ p 

p 3 
= pZ _ 2plog(p - 1) + ~ - ~ + 21og(p - 1) 

I> p2 _ 2plogp. 

Thus (b) holds. 
Similarly to g~, we can define for a given n, collections g~,. These include an 

inequality for each h, 0 ~< h ~< LlogpJ .  To obtain the hth inequality, let Ph = P and 
recursively define Ph = L P{*- t)/2 J as before. Set j  = n - p, + I and k = n and use for 
the hth inequality {3) if k - j  is even and k # j ;  the empty inequality 0xi 1> 0 if k = j ;  
and the inequality (4) if k - j  is odd. 

The sets of inequalities ~f~ and g~, are symmetric in the sense we now make precise. 
Consider g~p wbenj -- I and k = p, and rg,~, wbenj -- n - p, + ! and k = n. Then k - j  
is p, - 1 in both cases, so we use the same inequality (3) or {4} in each case. Whenever 
in (3) or (4) in ¢'p there is a ter~ ixi = ixj+i- t, then in (3) or (4) in ¢~, there is 
a corresponding term ixa_s = i.,q_~. Whenever in (3) or (4) in ~p there is a term 
L x k - ~ = i x p - .  then in (3) or (4) in ~=~, there is a corresponding term 
ix~+~_ l = ix . - , ,~- iv  Whenever in (4) in ¢'p there is a term 

k - j  + 1 p h -  1 + 1 ph x 
2 X(J+(k-j+l)/2| 2 Xl+(ph-|+|)/2 ='2"" ph/2, 

then in (4) in ~ ,  there is a corresponding term 

k - j +  1 n ~ ( n - p , +  1)+ 1 p, 
2 "XO+{k-j+ 1)/2) m 2 X a - ~ +  1 + ( . - ( a - t ~ +  1) -  1~/:~ ~ " ~ - x ' l n - ~ ) / 2 -  

in all cases, whenever there is a term xm in the set of inequalities % ,  ~here is 
a corresponding term .'¢.-m with ti:e same coefficient in the set of inequalities ~;,. 

As with ¢~. summing the inequalities in ¢'~, we obtain an inequality of the form 

a - !  

cgxm ~ f'(p), 
m~n-p+ 1 

where 
(a') c~,_, .  ~< p - m.  

(b') .f'(p) >>. pZ _ 2plogp. 
By the symmetry to ~'~, with .x.-m replacing xm, (a') and (b') hold. 
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n - I  Finally to get a bound on Y-z= 1 x~ we use the following collection of inequalities: 
(i) One copy of inequality (3) or (4) for j  = I and k = n. 

(ii) One copy of the collection HL,/2 j. 
(iii) One copy of the collection H~,;2 j. 

Summing inequalities from (i), (ii), and (iii) we get an inequality 

(L I) ~'. dmxm >1 + f + f . (7) 
m = l  

The right-hand side of this inequality is the sum of the bounds for (i), (ii), and (iii). 
For the coefficients dm on the left side of the inequality, note that in 9fL~, j the only 

nonzero coefficients are for {xt . . . . .  XL,/:j-t} andd in ¢'i,/" J the only nonzero coeffi- 
cients arc for {X,_L,2j+~ . . . . .  x , - l } .  Note that n - L n / 2 J +  1 = F n / 2 1 +  1 so the 
nonzero coefficients from (ii) and (iii) do not overlap. Consider the coefficient dm for 
m < Ln/21~ In this case, dm< (Ln/2d - m) + m <~ n/2. Here the first term is the 
coefficient from (ii) with the bound (a) and the final m is the coefficient ofxm in (i). For 
d,, if m > [" n/2"[, we get the same bound from (iii) and (a') andd (i). When n is even 
.x'n/, appears only in (i) and has coefficient n/2. For n odd, XLn:: j and -~%/' 1 appear only 
in (i) with coefficient L n/2.~ So the coefficients dm are all less than or equal to n/2. 

Also note that substituting the bounds (b) andd {b') forf(Ln/2 J) a n d f '  (Ln/2J) into the 
right-hand side of(7) we get the same right-hand side as in (5) and (6) with n instead of 
p. Thus, as in (5) and (6), we get the right-hand side of (7) greater than or equal to 
n 2 - 2nlogn. Using this bound and the bound dm <<. n/2, we get from (7) that 

n - /_)  >t n 2 2n log n. Y lx.~>~ d.x.>~ +S +S' - 

m =  = 

Hence, 

xm ~> In-" - 2nlogn) = 2n - 41ogn, 

giving the desired lower bound on the reversing number of T~. 
For the upper bound we construct a tournament T on 3n - 4 vertices with T, as 

a minimum reversing set when n~>4. Let T~ have acyclic ordering 
~r(v~) < ~(v~_l)< -.- < ~(vz). Let T '  be an acyclic tournament with vertex set 
V {T ' )  = V (T~)u  {uH ,u{~- l)o } u {uq: 2 <~ i <~ n - 2. j = O, 1} and acyclic ordering 7r' 
satisfying ~'(vl) < ~'(ult) < ~'(v,), 7t'(vi) < ~'(ulo) < lr'(uil) < ~'(vi+l) for 2 ~ i ~< 
n - 2 ,  and ~'(v ,_ l )<~°(u{ ,_ ,~o)<~'(v , ) .  Since Te, c T ', we can define 
T = ( T ' \  T,a)u T,. T, is shown in Fig. 10. By the construction of T, T, is a reversing 
set of T. To show that T~ is a minimum reversing set of T we consider the following 
set z of n(n - 1)/2 triples: 

T ~ TI UT2UT3, 
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Vl Ul,J V2 u-..o u~t V3 Vi ~ ui,l V l ~ ' ~ ' ~ t V  l~q.o Vi+l n-2 n-I Vn 

Fig. 10. T with T. as a minimum reversing set. (All arcs which arc not shown are directed from left to right 
in the figure.) 

where 

' v " l } , ~  

~3 = { ( v , , u i o ,  V.): 2 ~ i ~ n - 1} 

with 

k,j-- I -2 /1  and ~,~ = (j  - i)mod2. 

(Notice that, ifn 1> 4, these triples are indeed constructed with 2n - 4 "extra" vertices, 
i.e., we need no u~o or  u¢,_ t)t to build them.) 

It is easy to check that the orientation of tile arcs of these triples is such that ever:," 
one of them is in fact a 3-cycle. So it is enough to verify that these n(n - 1)/2 3-cycles 
are arc disjoint to complete the proof. First, notice that if we have k~j6ij = k,~6,~ and 
i = r o r j  ~- s, then if, j )  = (r,s). So, if two 3-cycles from et u ¢2 have a common arc (two 
common vertices), then it is the same 3-cycle. Therefore, the 3-cycles from ~t u¢2 are 
arc disjoint. On the other hand, the 3-cycles from 32 u : 3  are obviously arc disjoint. 
Finally, consider a 3-cycle from e t: (v~, ueh,j.a,j~, vj) with I ~< i < j ~< n - 1, and a 3-cycle 
from ~3: (v,, u,o, v.) with 2 ~ r < n - 1. If they had a common arc, it would necessarily 
be the arc (v,, U,o), and then we should have i = r and (vi, uqk,j.a,~) = (vs,Uio). But this 
equality is not p6ssible, since kij = i and j > i imply j = i + 1, and so 6~j = !. I--I 

We note at this point that we could set up an integer linear program to minimize the 
sum of the x~ subject to inequality (3) or  (4) for a l l j  and k with 1 ~<j < k ~< n. The 
solution of this would provide a bound on the reversing number. It would be 
interesting to see if the bound derived from this integer program is tight. The 
multipliers used in the collection of inequalities used in the proof of the lower bound 
can be viewed as variables in a dual feasible solution to the linear program obtained 
by relaxing the integer constraints. Notice that the upper bound 2n - 4 is not tight in 
all cases, as can be seen in Table 1, which lists exact values of r ( T , )  for small n. The 
values in this table have been calculated by special cases of tbe  techniques in the proof. 
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Table 1 
Exact values of r(T~) for small n 

n 2 3 4 5 6 7 8 9 10 11 12 

riTm) 1 3 4 6 8 10 I1 14 15 17 19 

6. Reversing numbers of aeyclic digraphs in some special classes 

In this section we compute  the reversing number  for acyclic digraphs in various 
special classes. 

6.1. Stars 

Let a directed star S~ be a digraph on  n ver t ic~  with a distinguished vertex v 
such that all arcs in S, contain v as either head or  tail. Note  that S. contains  n - I arcs 
and  by our  convent ion of denot ing by IS~I the size of the arc set of S~, we have 

ISnl = n - !. 

Theorem 19. l f  S .  is a directed star on n vertices then r(Sn) = n - 1. 

Proof. By Lemmas 10 and  12, we may assume that S. is the directed star in which 
v = Vo is the head of all arcs, i.e., S~ = { (v,  e'o): i = 1,2 . . . . .  n - I }. Let T realize S. and  
let n be the acyclic ordering of (T \S~)uSa . .  Since (Vo, Vi)eS~., ~(Vo)<~(vs), 
i = 1,2 . . . . .  n - 1. Without  loss of generality, n(Vo) < ~(vt) < n(vz) < ... < n(v~_l). 

Also, by Lemma 2, we may assume that there are no  "extra" vertices w, i.e., vertices in 
V ( T ) \ V ( S n ) ,  such that ~z(w)> 7¢(v~_1) or  x ( w ) <  It(vo). For  i = 1,2 . . . . .  n -  1, let 
there be ks extra vertices .,c~t,xsz . . . . .  xs~, between v~_~ and v~ in ~., i.e., 
~(v i - l )  < n(xo) < n(v~), f o r j  = 1,2 . . . . .  ks. 

N(;te that n-~ _ Es=l k s - r ( S . ) .  Let X = {(Vo,Xo): i =  1,2 . . . . .  n - 1, j =  1,2 . . . . .  kl}. 
Then  X ~_ T and  ( T \ X ) u X  x is acyclic, with the acyclic order n '  obtained from ~ by 

making Vo a sink instead of a source and  mainta in ing the acyclic order among  the 
other  vertices. That  is, n'(u) = n(u) - 1 for u ~ Vo and x'(Vo) > ~'(v._ t) > ~'(u) for all 
u E V(T) .  Since S~ is a min imum reversing set of T,  

I x l  ~ I s . I  = n - I. 

Note tha t  IX[ - "-~ - ~s=,. kj = r(S,). Therefore, r(Sn) ~> n - 1. Letting k~ = I for all i gives 
a tournament  of 2n - 1 vertices containing the n - 1 arc disjoint 3-cycles (xst, v~, Vo), 
i = 1 . . . . .  n -  1, with S .  as a reversing set and thus a min imum reversing set by 

Lemma 5. [ ]  
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6.2. Disjoint arcs 

As mentioned above, there exist digraphs whose reversing number is 0. An example 
will be the disjoint union of n arcs, the graph we denote by E~. 

Theorem 20. r ( E l )  = r (Ez)  = 1, and r (E, )  = O, n >1 3. 

Proof. Note that Es = Pz. Therefore, by Theorem 13, r{Es)  = 1. 

By Theorem 17, r (E: )  > 0 since Ea has only 4 vertices. Let T '  be given by the 
digraph in Fig. 11. Ez is clearly a reversing set of T' .  Also the two arc disjoint 3-cycles 
(v3, vs, x) and (v4, v:, v3) imply that the reversal of one arc of T '  will not produce an 
acyclic tournament. Therefore, T '  realizes Ez and r(E2) = 1. 

Let n 1> 3 and let the E, be defined by 

V ( E , )  = {v~.v2 . . . . .  v,,}. 

A(E,) = {(v,+ ~.v~).(v,+2.v2) . . . . .  (v2,.v,)}. 

Let T '  be the acyclic tournament on V ( E , )  with acyclic ordering ~ such that ~(r~) = i. 
Note that E, R ~_ T' .  Let T = (T ' \E ,~)uE, .  Hence. E, is a reversing set of T. Next. we 
will exhibit n arc disjoint 3-cycles in T. Since there are n arcs in E.. this will imply by 
Lemma 5 that E. is a minimum reversing set of T. i.e.. T realizes E,. Therefore. since 
I V(T)I = I F(E,)I. r(E~) = O. 

Let 

= {(v~. v 2 , v . + ~ ; , ( v , . v ~ . v , + , ) .  . . . .  (v,_, .r , .v, . ,_~}u{(v,.v, ._, . .v, . ,~}. 

It is an easy exercise to see that ~ contains n arc disjoint 3-cycles from 7", provided that 
n>~3. [:1 

6.3. Complete  bipartite digraphs 

In this section we compute r(Km.,) ,  where 

V(K , , . , )  = {v~.v, . . . . .  v , , } u { u ~ , u ,  . . . . .  u,} 

~ V4 

Fig. 1 I. T ° realizing E.. 
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and 

A ( K , . , )  = {(vi, u~): i = 1 . . . . .  m , j  = 1 . . . . .  n} .  

Km.~ will be called a complete  biparti te digraph. 
We will make use of Latin rectangles in the next proof. An m x n Lat in  rectangle 

with entries from a set S of n distinct elements is an array with entries from S such that 
no element of S appears twice in the same row or in the same column. It is not difficult 
to show, using for example Hairs  marriage theorem, that m x n Latin rectangles exist 
for m = I . . . . .  n (see for example 1"30]). 

Theorem 21. r ( K ~ . , )  = max{re, n}. 

Preof. By Lemma 10, we may assume that max{re, n} = m. 
First we show that r(Km.,)<~ m. Let T '  denote the acyclic tournament on 

V ( K , ~ . , ) u  {x~,x., . . . . .  xm} with acyclic ordering n such that 

~(ul)=L i=I,2 . . . . .  n, 

n(.,~i) = n + j ,  j = 1,2 . . . . .  m, 

r q v A ) = n + m + k ,  k = l , 2  . . . . .  ~.  

Note that K~.~ ~_ T'.  Let T = ( T ' \ K ~ . , ) u K  . . . .  Hence, Km.~ is a reversing set of T. 
Since there are mn arcs in Km.~, if we can exhibit mn arc disjoint cycles in 7", this will 

imply by Lemma 5 that Kin., is a minimum reversing set of T and hence r(Km.,) ~< m. 
Let L be an m x n Latin rectangle with entries from x t , x 2  . . . . .  xm. Consider the mn 

3-cycles (ui, Lii.r~) for 1 ~< i ~< m and I ~<.j ~< n. Since L is a Latin rectangle, i # i' 
=~ L o ~ L~. i a n d j  # j '  =~ L~ # Lij.. Thus the mn 3-cycles are arc disjoint. 

Next, suppose that r (K,n .~)< m. Therefore, there exists a tournament T with 
minimum reversing set Km.n such that ] V(T)[ < m + n + m. Without loss of general- 
ity, we may assume that the acyclic ordering n' of the vertices of T '  = (T \ Km.~) u K~.,  
satisfies 

n'(u~) < ~'(u2) < "" < ~'(u~) < ~'(v~) < ~'(v2) < "" < ~'(vm). 

Let {.xl,x2 . . . . .  .xk} be the extra vertices in T~ i.e., {xl ,xz . . . . .  .xk} = V ( T ) \ V ( K , u ) ,  

and note that k < m. Also note that every directed cycle in T must contain an arc of 
the form (ul, xj) where ~'(ui) < ~'(xj). Let X = {(ui, x~): ~'(ul) < ~'(x~)} ~_ T. Thus 
X is a transversal of the cycles and by the remarks in the introduction, the minimum 
size of a transversal is equal to the size of a minimum reversing set. Thus the size of 
a minimum reversing set of T is at most IX[ ~< kn < m n  = [Kin.,[. This contradicts the 
assumption that Kin., is a minimum reversing set of T. Therefore r ( K u ) t >  m. 
Combining the two inequalities we have r (Km. . )  = m. []  

Notice that the result for complete bipartite digraphs yields an alternative proof of 
the result on stars since K~.._ t is a directed star. 
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6. 4. Alternating paths 

We have shown in the case n/> 8 of the proof of Theorem 17 that the reversing 
number of alternating paths on eight or more vertices is 0. We now determine the 
reversing number of all alternating paths. 

T h e o ~ m 2 2 . ~ t A n b e a n a ~ e r n a t ~  ~ t h o n n v e r t i c e s . ~ e n ,  

! ~ n = 2 , 4 , 5 , 6 , 7 ,  

r (An)= ~ n = 3 ,  

~n~8. 

Proof. As noted in the proof of Theorem 17, Lemma 10 says that r(D) = r(D a) for all 
D. Thus, we may assume that An is labeled with vertex set {v~ . . . . .  vn} and arc set 
{ (vi, vi + 1 ), (vi, v~- 1 ): i is odd, and both vertices are in V }. The eases n >~ 8 were shown 
in the proof of the case n ~> 8 of Theorem 17. Thus we must consider the cases n ~< 7. 

Case n = 2, 3: Note that A2 and A3 are directed stars on two and three vertices, 
respectively. Thus, by Theorem 19, r(A2) = 1 and r(A3) = 2. 

Case n = 4,5,6: By Theorem 17, r(A4) ,r (As) , r (A6)> 0. Fig. 12 shows directed 
tournaments T'(A4), T'(As), and T'(A6)  on 5, 6, and 7 vertices, respectively, which 
can easily be shown to have reversing sets A~, As, and A6, respectively. Also, in Fig. 12 
we list 3, 4, and 5 arc disjoint cycles from T'(A4),  T'(As), and T'(A6), respectively, to 
show that T'(A4), T'(As), T'(A6) realize A4, As, A6, respectively. Thus r(A4) = r(As) 
= r(A6) = 1. 

Case n = 7: We show that r(AT) ~< 1, by the tournament in Fig. 13. 
Next we must show that AT is not a minimun, reversing set of any tournament on 

7 vertices. Suppose that there exists a tournament T* on 7 vertices with AT as 

a minimum reversing set. 
We first show that the outdegrees of T* must be in {2,3,4}. | f  there were a vertex 

x in T* with d~-.(x) = 5 or 6 (respectively 0 or 1), then by reversing at most one arc, 
a tournament T g it!- x as a source (respectively sink) is obtained. Recall the result of 
Bermond and Kodratoff [61, used in Theorem 17, that m6, the size of a largest 
minimum reversing set for a tournament on 6 vertices, is 4. Then TI~.~T.~, ~ can be 
made acyclic with at most four reversals and, by Lemma 2, the size of a minimum 
reversing set of T* is at most five. Thus all outdegrees in T*  must be 2,3 or 4. 

The outdegrees in T*  cannot all be 3, since in any reversing set the vertex which 
becomes the sink after reversal must be contained in three arcs which are reversed and 
there is no such vertex in AT. 

Thus, since the sum of the outdegrees of vertices in T* is n(n - !)/2 = 21, the 
muitiset of outdegrees for T* must be one of {2,3,3,3,3,3,4}, {2,2,3,3,3,4,4}, or 
{2,2,2,3,4,4,4}. The outdegrees after reversal o f tbe  arcs in a minimum reversing set 
are {0,1,2,3,4,5,6}. Since the arcs of AT are those which are reversed in T* to make 
the tournament acyclic, we see that the changes in outdegrees from T* to 
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(a) T'IA4) containing arc disjoint cycles Iv1, v2, ~'4~ (vs, va, x, rl ) and (rs, v4, x~ 

(b) T'IA~I containing arc disjoint cycles (vl, v,, x), (vs, ~'a, vs), lvs, v4, el ) and lrs, r4, x). 

v5 

(c) T'IA6) containing arc disjoint cycles (v~, v,, v~), (Vs, v,, x) Its, v4, rl ). (Vs, v.,, xl and (vs, t,6, vs). 

Fig. 12. Tournaments realizing alternating paths A4, As, A6. 

( T * \ A ~ ) u A ~  must be exactly three increases by two, two decreases by two, and two 
decreases by one. It is easy to see that these changes cannot transform the outdegrees 
{2,3,3,3,3,3,4} into {0,1,2,3,4,5,6}. Thus {2,3,3,3,3,3,4} cannot be the multiset of 
outdegrees. 

Consider next the case of {2,2,2,3,4,4,4}. Every tournament contains a Hamil- 
tonian path (see for example [14]). Applying this observation to the subtoumament of 
T* induced by vertices of outdegree 4, we see that we can find x,y,z with 
(x, y), (y, z) E T* and d~. (x) = d~.(y) -- d~.(z) -- 4. Consider an acyc|ic tournament in 
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Fig. 13. Tournament with A7 as a minimum reversing set containing arc disjoint cycles (r~,z:.xk 
(r~. r:.v~). (rj.r,.x). (vs.v4.r:). (vs.r~.r~) and Ir~.r6.r~ ). 

which x is a source, y is beaten only by x, and z is beaten only by x and 3'. That is, the 
acyclic order for T has nix) < ~z(y) < n(z) and n(,..) < n(r) for all t, =~ x,y. Here, two 
reversals in T* are needed to make x a source. In T*, y was beaten by two vertices, 
one of which was x, so one reversal is needed to put 3' in order. Also : was beaten by 
two vertices, y and another (possibly x), so at most one more reversal is needed to 
place z third in the acyclic order. Finally the remaining vertices form a tournament on 
four vertices; since m4 = 1 at most one additional reversal is needed to make these 
acyclic. Thus an acyclic tournament T can be always obtained from T* with at most 
five reversals, two for x, one for y, at most one for z, and at most one for the remaining 
vertices. Hence AT cannot be a minimum reversing set of a tournament with outdeg- 
rees {2,2, 2,3,4,4,4}. 

Finally, consider the outdegrees {2,2,3,3,3,4,4}. Denote by X = {.xl,.x2} the 
vertices with outdegree four, Y = {Yl,Yz,Y3 } the vertices with outdegre¢ three, and 
Z = { z t , : 2  } the vertices with outdegree two. Since each vertex is contained in a total 
of six arcs, both x l and x2 are the heads of two arcs. Assume without loss of generality 
that xt beats x2, i.e., (x t ,x2)~  T*. 

Consider first the case that there exists a vertex in Y {with outdegree three) which is 
beaten by both xt and x , .  Without loss of generality assume that this vertex is Yt- Since 
d~.(yx) = 3 and Yl is beaten by both xt and .'~:,Yl must beat three of the four vertices 
{Y2,y3,zl,-'2}. The acyclic order with n(.xt) < n(x2) < n{yl) and ~Yl)  < n(v) for all 
v ~ {y2,y3,zt ,z:  } can be obtained from T* as follows: Two reversals for the arcs with 
.~cl as head, one reversal for the arc other thani(xl,x2) wi~h x., as head, one reversal for 
the arc from the one vertex in {y,-,ya,zl,:2} beating y~, at most 
one reversal to put the four vertices {y2,y3,zl ,z , .}  in acyclic order. The last 
point follows since m4 = 1. Thus an acyclic order is obtained from T* with a total of at 
most five reversals, showing that A7 is not a minimum reversing set ofsuch a tournament. 
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Otherwise, there is no vertex in Y beaten by both x~ and x.,. If this is the case, 
(x ,  z~) E T* for i, j = 1, 2. This follows since xl  beats three of the vertices and x ,  beats 
four of the vertices among Y u Z  and no vertex in Y is beaten by both xl  and xz. Then 
x2 must beat two ofthe vertices in Y and x~ must beat one vertex in Y and these must be 
dis~.inct. So we may assume that (x~,y~),(x2,y2),(x2,y3)sT* (and that 
(y~,x2).(y,.,xt),O'3,x~)¢ T*). Then T* is as shown in Fig. 14. Consider the acyclic 
order with r~(x~) < 7riyal < tt(x,) and r~(x_,} < lriv) for v~ {y,.,ya,zt,z2}. This is ob- 
tained from T* by at most five reversals; two for reversing (Y.,,-'~ ~ ) and (Y3, x~ ), two for 
the two arcs from a vertex in ~, .,,Y3,-1,:., } with y~ as head (since d~-.(y~ ) = 3), and at 
most one to put {y,.,y3,z~,z,.} in acyclic order. The last p~int follows since m4 = 1. 
Thus A7 is not a minimum reversing set of T* in this case, completing the proof that T* 
cannot have outdegrees {2, 2, 3, 3, 3,4,4}. This completes the proof that r(A7 ) :~ 0. [ ]  

6.5. Alternating cycles 

Let AC2~ be the alternating cycle on 2n vertices (n ~> 2), that is, the graph for which 
there exists a numbering such that X.,~ = {x~[ 1 ~< i ~< 2n} is the set of vertices and 
A,.~ = {{.'~:~i_l,x,.i)ll <~ i <~ n} u{i.x.,i+ l,.x.,i)l I ~< i ~< n - l}u{(xl, .x. , , )} is the set of 
arcs. We now prove the following theorem. 

Theorem 23. Let AC,., be the ahernating cycle on 2n vertices in >1 2). Then we have: 
riAC4) = riAC6) = 2; r(ACs) = 1; and riAC,.,) = Ojor n >I 5. 

Proof. Case n = 2: Note that AC.~ is the complete bipartite digraph K 2 , .  Thus, by 
Theorem 21, we have r(AC4) = 2. 

Case n = 3: Note that an alternating path APe on six vertices is a subgraph (on the 
same vertex set) of AC6. Thus, by Theorems 8 and 22, we have r(AC6) ~> 1. 

Suppose that riAC6) = 1. Then there exists a tournament T* on seven vertices with 
AC6 as a minimum reversing set. We first show that the outdegrees of T* must be in 

Yl 

ZI 

Y2 

z2 
Y3 

x2 

Fig. 14. T*. (All arcs which are not shown may have any orientation.) 
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{ 2, 3, 4}. If there were a vertex x in T* with d~.(x) = 5 or 6 (respectively 0 or 1 ), then by 
reversing at most one arc, tournament T with x as a source (respectively sink) is 
obtained. Recall the result of Bermond and Kodratoff r6l, mentioned before the proof 
of Theorem 17, that m6, the size of a largest minimum reversing set for a tournament 
on 6 vertices, is 4. Then TJv~T.~\x can be made acyclic with at most four reversals and, 
by Lemma 2, the size of a minimum reversing set of T*  is at most five. Thus all 
outdegrees in T* must be 2,3 or 4. 

Thus, since the sum of the outdegrees of vertices in T*  is n(n - 1)/2 = 21, the 
multiset of outdegrees for T*  must be one of {3,3,3,3,3,3,3}, {2,3,3,3,3,3,4}, 
{2,2,3,3,3,4,4}, or {2,2,2~3,4,4,4}. The outdegrees after reversal of the arcs in 
a minimum reversing set are {0,1, 2, 3,4, 5, 6}. Since the arcs of AC6 are those which 
are reversed in T* to make the tournament acyclic, we see that the changes in 
outdegrees from T* to (T*\AC6)uAC~ must be exactly three increases by two, three 
decreases by two, and one vertex with no change (corresponding to the "extra" vertex). 
It is not difficult to check that of the four possible multisets, only {2, 2, 3, 3, 3,4,4} can 
attain {0, | ,2,3,4,5,6} by these reversals. Thus, we consider this case. 

In order to transform {2,2,3,3,3,4,4} into {0,1,2,3,4,5,6} by the reversal de- 
scribed above it is necessary that the outdegrec of the extra vertex is three. For 
i = 0 , 1  . . . . .  6. let v~ denote the vertex with outdegree i in the tournament 
(T*\AC6)vA~66. Note that v3 is the extra vertex and that re, vt, and v2 are the 
sources in AC6 and v~,vs, and v6 are the sinks in AC6. Note also that (v6, vs),(v6, v4), 
and 0:6, v3) are all arcs of T* since they are arcs of ( T * \  AC~)u A C~ and not arcs of 
AC6. Then, since dT.(v6) = 4 (~s outdegree was increased by two), it must be that 
(v6,v~) ~ T* for exactly one of j = 0, j = 1, or j = 2. We consider each of these 
possibilities separately. In each case we exhibit a reversing set of size five, contradic- 
ting the assumption that T* has AC6 as a minimum reversing set. 

If (v6, v2)e T*, then (v2, vs) and (v2, v,,) are both in AC~ and thus in T*. Consider 
the acyclic ordering ~(v6) < ~(v2) < ~(vs) < ~t(v4) < it(v3) < ~(vl) < ~r(vo). This 
is obtained by reversing the same four arcs on V(T*)\{v2 } as those on AC6 (which 
is the subgraph induced on AC6 by these vertices) and the arc (v3, v2), a total of five 
ares. 

If (v6,vl)¢ T*, then (v~,vs) and (v~,v4) are both in AC6 and thus in T*. Also, 
(v2, v6) e T* by assumption and exactly one of (vs, v2) and (v,,, v2) is in T*. Consider 
the acyclic ordering ~(v,) < ~(t,6) < ~(vt) < ~(Vs) < ~(v~) < ~(v~) < ~(Vo). This is ob- 
tained by reversing the two arcs on the subgraph of AC~ with vo as tail, the ares (vs, v~) 
and (v~, vt), and the arc from {ivs, v,), (v4, v,)} that is in T*, a total of five arcs. 

If (V6, V0)¢ T*, then (re, vs) and (~o, c,,) are both in AC6 and thus in T*. Also, for 
j .~. 1, 2, (~, v~)e T*  by assumption and exactly one of (Vs, ~)  and (v~, v~) is in T*. 
Consider the acyclic ordering ~(vz) < ~(v~) < ~(~;6) < ~(vo) < ~(Vs) < ~(c4) < ~(vs). 
This is obtained by reversing the arcs (~s,~,~) for i ~ 1, 2, 3 and forj  ~ 1, 2, the arc from 
{(vs, t,~),(va, ~)} that is in T*, a total of five arcs. 

To complete the proof of the case n -~- 3, we ~xhibit in Fig. 15 a tournament T on 
eight vertices with AC6 ~s a minimum reversing set, showing that r(AC6) ~ 2. 
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Fig. ! 5. T on eight vertices with .4 Co as a minimum reversing set, containing arc disjoint cycles (Co, x s, rs ), 
{r~. x~,r.O, {r:,x~, r~), {ro,x:,r~ ~, (r~.x.,, vs) and {r,,x2,vs ~ 

i IV3 

Fig. 16. T on nine vertices with ACs as a mini.'nual reversing set, containing arc disjoint cycles (to, v4, VTk 
(ro,~,v~), {r~,x.rs). (r,,r~,r~}~ (v~,x. rT) (v6.vz,vs) (vz,x. v3) and (r2,rT.r.)~ 

Case n -- 4: We first show that r(ACs) ~ O. Let x be the vertex which is the source in 

the acyclic order  of  the tournament  obtained by reversing the arcs of  ACs in 

a tournament  T with V(T)  =- V(ACs) that realizes ACs. By Lemma 3, the alternating 
path on seven vertices obtained by deleting the vertex x from ACs is a min imum 

reversing set of  the tournament  T restricted to V(T)  \ {x} = V(A Cs) \  {x}. This would 

be a tournament  on seven vertices with an alternating path on seven vertices as 
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Fig. 17. T on ten vertices with ACto as a minimum reversing set, containing arc disjoint cycles Iro, r.,, r~), 
(;'o.r3, r~ ). It'z, r~,r3 k It_,, r,. t't }. (rn.t't .r~). Ira,to, t'.J ) lr~,, r.~,rT) (t'o,r~,rs) (r.,, t~, ;'~ } and (r.~, ;q, rs). 

a min imum reversing set, contradicting r(AT) = 1, which was shown in Theorem 22. 
Thus,  r(ACs) i> I and  in Fig. 16 we exhibit a tournament  on  nine vertices with ACs as 
a min imum reversing set. So r(ACa) = !. 

Case n = 5: Fig. 17 exhibits a tournament  on  10 vertices with ACto as a min imum 
reversing set, showing that r(ACto) = 0. 

Case n >~ 6: Let m ~ 2n - 1. Consider T(Am) and z~, as constructed in the proof of 
the case n 1> 8 of Theorem 17. By conditions (e) and (b) of that proof, 0'~, rm- t ) is the 
only arc in a cycle of tin containing vm and (vz, vm) E T(Am). It can easily be seen that the 
extension from A,~ to A:o can be done so that (t~to, l,,t) E T(Ato) is not an arc of any 
cycle of t to  (see condition (e) of the proof). Then, (Vto, t ' t )E T(A,~) for m ;~ 10 since 
T(A to) is a subtournament  of the tournaments  constructed by the extensions. Addition- 
ally, since (vto~ t,'t ) is not  an  are of a cycle in zt o, it is not  an  arc of a cycle in rm (m ~ 10) 
by the construction of the t extensions. Let S = { ( r t o ,  rt  k (r2,vm)}. Since m ~ 11, the 
arcs of S are vertex disjoint. We have already noted that the arcs o r s  are not  arcs of any 
cycle of tin. Thus, we can form the source extension of Am with respect to S. The result is 
AC~,÷ ! = ACz,  and, by Lemma 16, we have r(ACz,) = 0 since flA,,_ t ) = 0. [ ]  

6.6. Arborescenees 

An arborescence is a rooted tree on n vertices (n ~> 2), with the arcs directed so that 
there is a (directed) path from the root to every vertex. Let R T .  denote an  arborescence 
on n vertices. It is well known that an  arborescence on n vertices contains n - 1 arcs. 
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Theorem 24. Let RTn be an arborescence on n vertices. Then r ( R T z ) =  1 and 
2 <~ r(RTn) <<, n - I for n >1 3 and the bounds are reached. 

Proof. The upper bound is immediate from Eq. (1) and the fact that arboreseenees on 
n vertices have n - 1 arcs. By Theorems 13 and 19, the upper bounds are attained by 
the directed paths P,  and stars with a unique source, both of which are arboreseences. 

For  n = 2, the only arboreseence on two vertices is the path P2 with reversing 
number one {by Theorem 13). For  n = 3, the only arborescences on three vertices are 
the alternating path A3 and the directed path Pz, both with reversing number two (by 
Theorems ! 3 and 22). 

Consider the case n = 4. Let RT4 be any arborescence on four vertices. RT4 has 
three arcs. Recall the results of Bermond and Kndratoff [6] regarding ink, the largest 
number of arcs in a reversing set on a tournament on k vertices mentioned before the 
proof of Theorem 17. We have mk< 3 for k < 5 so R 7"4 is not a minimum reversing set 
of any tournament on four vertices, i.e., r(RT.,) t> 1. It is easy to show (see [4]) that 
the only tournament on five vertices with a minimum reversing set of size ms = 3 is the 
regular tournament on five vertices (see Fig. 3), and that the minimum reversing sets of 
this tournament are not arborescences. So r(RT4) >1 2. 

Fig. 18 gives an example of an arborescence on 4 vertices and a tournament on six 
vertices realizing it. This shows that the lower bound is attained for n = 4. 

Finally, we consider n i> 5. We must show the lower bound and show that this 
bound is attained. 

Let p~ denote the minimum value of the reversing number for an arborescence on 
n vertices. We first show that p~_ ~ ~< p~. Let R T .  be an arborescence such that 
r(RT~) = p~ and let T be a tournament on n + p,  vertices realizing it. By Lemma 2, 
the vertex which is the unique source o f ( T \ R T , ) ~ 3 R T ~  is a vertex of RT~ and thus 
must be a leaf of R T,. Call this leaf x. Let R T~_ ~ denote the subarborescence of R T~ 
induced by V(R Tn)\ {x} (i.e., the arborescence obtained by deleting x and its incident 
arc from RT~). Also, let T '  be the subtournament of T induced by V ( T ) \ { x } .  By 
Lemma 3, RT,_~ is a minimum reversing set of T' .  Thus r ( R T ~ _ : ) ~ p ,  (since 

~VO 

Fig. 18. A toun~ament on six vertices with an arborescence on four vertices as a minimum reversing set. 
containing arc disjoint cycles {vs,rz.rt ), (r,.xo, ro) and {rl,x~,ro). 
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Fig.  19. A t o u r n a m e n t  o n  seven  ver t ices  wi th  a n  a r b o r e s c e n c e  o n  five ver t ices  as  a m i n i m u m  revers ing  set. 
c o n t a i n i n g  a r c  d i s jo in t  cycles  {Xo, x2, t'l ), (x2, xl ,  vz ), (x t  • Yo. t'~ k a n d  0~z, Yt • r l  }. 

I V(T)\  V(RT,)] = IV(T') \  V(RT,_ t)l = P,). We have already shown P4 = 2, so 
p,>_, 2 for n ~> 5. 

To show that the lower bound is attained, we exhibit first in Fig. 19 a tournament 
on seven vertices realizing an arborescence on five vertices. 

For n >~ 5, we prove by induction that there exist tournaments TN, arborescences 
RT, (on n vertices), and collections T, of arc disjoint cycles satisfying: 
(a) I V(T,)I = n + 2. 
(b) 7", has RT,  as a minimum reversing set. 
(c) l~,l-- n - I. 
(d) RT, has at least three leaves Xo,Xt,X2. 
(e) The arc (xo,xl) is in T~ but is not an arc ofany cycle of z.. 
Showing (a) and (b) will complete the proof as this shows that v(RT,) ~< 2 and we 
already have that r(RT,) ~ 2. So r(RT,) = 2. 

For n = 5, (a)-(e) are satisfied for the example of Fig. 19. The source extension of 
RT, with respect to (Xo,Xt) gives RTn+ i, and the extensions of ~, and T, gi~.e 
~,+ t and T,+ t. By construction of the extensions and by Lemma 16, (aHc) hold. 
Denoting the new vertex in the extension by v, we see that RT,÷ t has leaves xo, v and 
.,c2. So (d) holds. Also, (e) holds for the arc (v,x:) which is not an arc of any cycle of 

Tn+ l • [ ]  

7. Conclusion 

The acyclic order obtained after reversal of the arcs in a minimum reversing set can 
be used as a ranking of the players in a round robin tournament. In this case the 
minimum reversing set represents inconsistencies in the ranking, those cases where 
player a beats player b but a is ranked below b. The reversing number is defined by the 
minimum number of additional vertices in a smallest tournament in which a given set 
of inconsistencies can arise. It would be interesting to determine the exact value within 
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the bounds 2n - 41ogn ~< r(T,)  ~< 2n - 4 of the reversing number of the acyclic 
tournament on n vertices. It would also be interesting to examine exact values of the 
reversing number on other classes of acyclic digraphs, or for examp~ to find an 
expression for the exact value of  the reversing number of any arborescence. Another 
open question is to determine bounds on d(n, r), the largest arc size o i a  connected 
digraph on n vertices with reversing number r. We have not been able to show that 
d(n, r + 1) > d(n, r), even though this seems plausible. 

Calculation of the reversing number in general seems difficult. (Note that determin- 
ing the reversing number would sccm to require calculations of the size of minimum 
reversing sets and that that problem is NP-hard.) We currently do not know the 
complexity status of determining the reversing number. In fact, we do not even have 
algorithms for determining the reversing number for any class of acyclic digraphs. 

Finally, recall that the minimum reversing sots arise as the sets of backwards ares 
relative to a ranking which minimizes the number of backwards arcs. It would be 
possible to examine sets of arcs which arise as the backwards arcs under different 
ranking procedures, for example a ranking based on outdegrccs. A similar question of 
determining the size of a smallest tournament in which a given acyclic digraph is the 
set of backwards arcs under an "optimal" ranking can be asked. (See [17], where this 
question is asked for a weighted version of the reversing number, which is equivalent 
to using a ranking based on score sequences.) Such computations might provide 
another way to evaluate ranking procedures for tournaments. 
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