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Abstract

A mini ing sct of a digraph is a smallest sized set of arcs which when reversed
makes the digraph acyclic. We investigate a related issue: Given an acyclic digraph D, what is
the size of a smallest tournainent T which has the arc set of D as a minimum reversing set? We
show that such a T always exists and define the reversing number of an acyclic digraph to be the
number of vertices in T minus the number of vertices in D. We also derive bounds and exact
values of the reversing number for certain classes of acyclic digraphs.

1. Intreduction

Recall that a tournament is a directed graph such that for each pair x, y of vertices
exactly one of the arcs (x,)) or (y,x) is present. Slater {32] and Younger [38]
introduced the study of minimum sized sets of arcs which when reversed make
a tournament acyclic. Call such a set a minimum reversing set. As we shall observe,
minimum reversing sets are related to other kinds of sets studied in the literature of
electrical engineering, statistics, and mathematics. These are feedback arc sets, min-
imum sets of inconsistencies in a preference ordering, cycle transversals, and sets of
consistent arcs in a tournament. We investigate a related issue: Given an acyclic
digraph D, what is the size of a smallest tournament T which has the arc set of D
as a minimum reversing set? The reversing number of D is the number of “extra
vertices” in T.
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We shall adopt the graph theoretic notation that is summarized at the end of this
section. If F = {(x;,y1),....(xx yx)} is a set of arcs in a digraph, then its reversal is
F®R = {(y4,%1), ..., (Vx> X&) }- Ali digraphs considered in this paper will be simple; there
are no parallel arcs between two vertices.

With this notation, we make the following definitions.

Definition 1. A reversing set of a tournament T is a set of arcs F, such that (T\ F)u F}
is acyclic. A minimum reversing set in T is a reversing set of minimum size.

The notation (T'\ F)u F® will be used often and indicates the tournament obtained
by reversing the direction cf the arcs in the set F.

Define an ordering on a tournament T on n vertices as a function ¢ from the vertex
set of T to the set {1,2,...,n}. An ordering o is said to be acyclic when a(x) < a(y)
whenever (x,y) is an arc of T. Since an acyclic tournament has a unique acyclic
ordering (see e.g. [26]) that is in fact a linear order, we will talk about the acyclic order
or the order obtained after reversing the arcs of a reversing set. Given a general
ordering ¢ of the vertices of a tournament, we define the set of backwards arcs relative
to o to be the set of arcs (v,w) in the tournament such that a(w) < a(r). With this
notation, a reversing set F is the set of backwards arcs relative to the acyclic ordering
of the tournament obtained by reversing the arcs in F.

Definition 2. Given an acyclic digraph D, the reversing number r(D) of D is
min{|V(T)| — | V(D)|), where the minimum is taken over all tournaments T such that
D is a minimum reversing set of T.

We show in Theorem 7 that the reversing number is well defined if and only if D is
an acyclic digraph, justifying the definition.

In our study of reversing numbers we will make use of results on minimum
reversing sets. Reversing sets have been studied by a number of authors in different
contexts using different terminologies. In the electrical engineering literature feedback
arc sets, sets of arcs whose removal makes a digraph acyclic, have been studied. Given
a digraph D, it is easy to see that a minimum set of arcs whose removal makes
D acyclic is also a minimum set of arcs whose reversal makes D acyclic and vice versa,
50 the minimum feedback arc set problem and the minimum reversing set problem are
equivalent. To see this, note that it is obvious that any set of arcs whose reversal
creates an acyclic digraph also creates an acyclic digraph by its removal (since the
remaining arcs form an acyclic digraph). Conversely, let F be a minimal subset of the
arc set 4 of a tournament whose removal makes the tournament acyclic. By minimal-
ity, if (x,y)eF, then (x,)) is contained in a cycle C=(v,....,0,x) in
(A\F)u{(x,»}. If there is a cycle C’ in the tournament (A\ F)u F® obtained by
reversing the arcs of F, then replace each arc (y,x) € F® which is on C’ with the path
Falpse.. s 0. X from a cycle C containing (x, y) in (A\ F)U{(x,»)}. Since all these arcs
are in A\F, this results in a closed directed chain in A\ F. Such a chain contains
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a cycle, contradicting the fact that removal of F creates an acyclic digraph. Thus, the
equivalence is established.

Runyon first suggested study of the feedback arc set problem. (His question is cited
in the list of problems in [31] and is called the feedback cut set problem.) Tucker [36]
gave an integer programming formulation and Younger [38] began the analysis of the
structure of the feedback arc sets. Lawler [23] formulated the problem of finding
a minimum feedback arc set as a quadratic assignment problem. Hakimi [13], Lempel
and Cederbaum [24], Kamae [19], and Yau [37] continued analysis of the structure
of these sets and suggested algorithms and heuristics for finding minimum feedback
arc sets in general. In addition, Karp [20] showed that findisig the size of a minimum
reversing set, i.e. 2 minimum feedback arc set, is NP-hard in general.

In the statistics literature, Slater [32] first suggested the study of minimum sets of
inconsistencies of a preference ordering (ranking) with the observed relations from
a complete paired comparison experiment. The graph theoretic model of paired
comparison experiments has the objects being compared as vertices of a digraph and
an arc from x to y if and only if x is preferred to y. A nearest adjoining order is a linear
order such that the number of preferences inconsistent with that order is minimized.
Since preferences in a linear order induce an acyclic tournament, minimizing the set
of inconsistencies is the same as finding 2 minimum set of arcs whose reversal makes
the preference digraph acyclic and vice versa. Slater [32] sought to determine
the probability distribution over every tournament (outcomes of all possible compari-
sons) of the size of a minimum set of inconsistencies over all possible orderings.
This work was continued by Alway [1], Thompson and Remage [35], Remage
and Thompson [29], Bermond [4], Bermond and Kodratoff [6], Monjardet [25],
Hubert [16], and Baker and Hubert [2], to name a few, with suggestions for
algorithms and study of more general questions with different weightings on the
amount of inconsistency. Ref. [16] is a survey uniting the electrical engineering and
statistics literature.

A third source of interest in minimum reversing sets arises in the mathematics
literature. Erdds and Moon [10] introduced the question of finding the greatest
integer & such that every tournament on n verticcs has a set of k consistent aics
{i.c., an acyclic subdigraph with & arcs). The study of this value has been continued by
Reid [27], Reid and Parker [28], Spencer [33,34]. and de la Vega [9]. A number of
authors have studied the computational aspects of determining a largest acyclic
subdigraph of a digraph. The complement in a digraph of the arc set of a largest
acyclic subdigraph is a minimum reversing set of the digraph and vice versa. The
polytope of the largest acyclic subdigraph problem has been studied by Grotschel et
al. [11,12] and Jiinger [18]. Korte [21] examines approximation algorithms for this
problem.

As we have already remarked, the problems mentioned above are all equivalent.
(This has been proved by a number of authors.) Since reversing the arcs in a minimum
reversing set makes a digraph acyclic, every cycle in the digraph must contain an arc
from the minimum reversing set. That is, the arcs of a minimum reversing set are
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a transversal of the cycles in the digraph. In fact the minimum size of a transversal of
cycles in a digraph is equal to the size of a minimum reversing set. (This follows from
the fact that removing the arcs of a transversal of cycles creates an acyclic digraph and
from the equivalence of minimum feedback arc sets and minimum reversing sets.) This
has been shown by Dzmbit and Gindberg (cited in [5]) and Remage and Thompson
[291. All of this can be summarized by the following.

Remark. In a tournament, the problems of finding a minimum reversing set, a min-
imum sct of inconsistencies, a minimum feedback arc set, a largest acyclic subdigraph,
and a minimum transversal of cycles are all equivalent.

See [18] for more information on equivalent versions of the problem of finding
a minimum reversing set and for applications.

Since a minimum reversing set is also a minimum transversal of the cycles, every arc
in a minimum reversing set is contained in a cycle. In fact, we show in Theorem 6 that
every arc of a minimum reversing set in a tournament must be contained in some cycle
on three vertices (a 3-cycle). However, while the largest collection of arc disjoint cycles
in a digraph provides a nice lower bound on the size of a minimum reversing set, this
bound is not tight. Kotzig [22] and Bermond and Kodratoff [6] have shown that for
n > 10 the bound is not tight even for tournaments, ie., for n > 10 there exist
tournaments on n vertices such that the size of a minimum reversing set is strictly
greater than the largest collection of disjoint cycles in the tournament (see also [7]).

In Section 2, we review basic results on reversing sets which are useful in the study
of reversing numbers. We also show that the reversing number is well defined. In
Section 3, we develop some basic bounds on the reversing number. In particular, we
show that the reversing number of an acyclic tournament on n vertices is an upper
bound on the reversing number of any acyclic digraph on a vertices. A Hamiltonian
path in a digraph is a directed path which meets every vertex in the digraph once. We
also show a lower bound of #n — 1 on the reversing number of an acyclic digraph on
n vertices if the digraph contains a Hamiltonian path. Graphs with reversing number
0 are studied in Section 4. Using a technique to extend a digraph on n vertices to
a digraph on n + 1 vertices without increasing the reversing number, we show that
there are connected acyclic digraphs with reversing number O for n > 7. A parameter
d(n,r) giving the size of the largest arc set of an acyclic digraph on n vertices with
reversing number r is also introduced in Section 4. Bounds on d(n, {) and d(n,0) are
examined. Section 5 shows that the reversing number of an acyclic tournament on
n vertices is between 2n - 4log, n and 2n — 4. Finally, Section 6 establishes bounds
on the reversing number of arborescences and exact values of the reversing number for
directed stars, disjoint arcs, alternating paths, complete bipartite Jigraphs, aitcrnating
cycles.

We use the following graph theoretic notation. Any terms not defined here can be
found in [14] or [26]. A digraph D = (V(D), A(D)) is a set of vertices ¥ (D) and arcs
A(D) which are ordered pairs from V(D). For an arc (x, ), x will be called the tail and
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y the head. The outdegree dj; (v) of a vertex v in a digraph D is the number of arcs in
D in which v is the tail. For simplicity in notation we will use D to denote the arc set
A(D) when there is no chance of confusion. D[y will denote the subdigraph of
D induced by the vertices of X & V(D). Recall that the reversal of a set of arcs 4 is
the set of arcs A% = {(v,w)|(w,v) € 4}. A digraph will be called connected if the under-
lying graph is connected. A cycle in a digraph is a sequence of arcs
(o, 1) (01, 02) ..., (U, o) With all vertices distinct. Such a cycle will be denoted by
(to, vy, ..., ) and called a (k + 1)-cycle. An acyclic digraph contains no cycles; D is
acyclic if and only if there is an ordering z such that (x,y) € D = n(x) < n(y). Such an
ordering will be called an acyclic ordering. A source (sink) in a digraph is a vertex with
no incoming (outgoing) arcs. A tournament T is a digraph such that for each pair
{x. ¥} € V(T)exactly one of (x, y) or (y,x) is in T. A tournament is acyclic if and only if
it has no 3-cycle. Throughout the text, we shall assume that the digraphs are without
isolated vertices.

2. Basic results on minimum reversing sets

The following lemmas regarding reversing sets will be useful in the study of
reversing numbers. The first three are from [38]. All follow easily from the definitions
above.

Lemma 1 (Younger [38]). If F is a minimum reversing set of @ tournament T then, for
F’ € F, F' is a minimum reversing set of T' = (T \ B)UB® where B = F\F'.

Lemma 2 (Younger [38]). If a vertex v is a source or sink in a tournament T, then F is
a minimum reversing set of T if and only if F is a minimum reversing set of T \ {v}.

Recall that an acyclic tournament has a unique acyclic ordering.

Lemma 3. (Younger [38]). If T is a tournament and F is a minimum reversing set such
that n{v;) < n(vy) < --- < ®(v,) is the acyclic ordering after reversal of the arcs in F,
then for any segment v;,V;41,...,Vi+j = S, Fls is a minimum reversing set of T|s.

Lemma 1 says that if F is a minimum reversing set of a tournament T then for any
subset F’ of F, if we reverse in T the arcs which are in F but not in F’ the new
tournament T’ has F’ as a minimum reversing set. If T* had a smaller reversing set
B then (F\ F’)u B would be a reversing set of T smaller than F. Lemma 2 states that
no arc in a minimum reversing set of a tournament T has a tail which is a source in
T or a head which is a sink in T. Lemma 3 is a direct consequence of Lemmas 1 and 2.

Lemma 4. If T is a tournament and W is any subset of the vertices of T, then for
a minimum reversing set F of T, the number of arcs in F joining vertices of W is greater
than or equal to the size of a minimum reversing set of T |w.
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Proof. The arcs in F with both ends in W form a reversing set of T restricted to
w. O

I.emma 5. If  is a collection of arc disjoint cycles in a tournament T, then for each
reversing set Fin T,

ldi <iFl.

Proof. If CnF =0 foracycle Cin T, then C is a cycle in (T'\ F)u FR, contradicting
the assumption that F is a reversing set. So each cycle contains at least one arc from F.
Since the cycles are arc disjoint the bound follows. [

We have mentioned in the introduction that each arc of a minimum reversing set of
a tournament 7 is in a 3-cycle of T. The proof of this is given in Theorem 6.

Theorem 6. Let T be a tournament and let F be a minimum reversing set of T. Then every
arc of F belongs to some 3-cycle of T.

Proof. Consider an arc (y, z) € F. Reversing the arcs of F which do not meet y or = will
not affect inclusion of (y,2) in a 3-cycle of T. By Lemma 1, reversing these arcs does
not affect inclusion of (3. z) in a minimum reversing set. Thus, it is enough to show the
result for (y,2)e F, F and T such that every arc of F is incident on either y or z.
Assume that this is the case. Assume also that the vertices are labeled so that the
acyclic ordering © of (T\F)UF®? is n{x,) < n(x;) < -+ < n(x,). So every arc of
F goes from x; to x; for j > k. Note that deleting vertices v such that z(¢) < n(z) or
@(v) > n(y) will not form new 3-cycles. Thus, we may assume that (¥, 2) = (X, xy). It
also follows that every arc of F has the form (x;, x,) or (x,, X;) since arcs (x;, x;) for
1 <i<j<ndonot meety=x,o0rz=x,.
Fork=1,n let

X¢ ={(x.x)eT:1<j<n},
Xy ={xpx)eT: L <j<n}.

Note that the four sets described above are all disjoint and that
F = X7 uX}u{(xsx;)}. Also, since all arcs of T which join x;toxj, 1 <i<j<n,
go from x; to x;, it follows that [T\(X { U X )Ju(X; VX, R is acyclic with acyclic
ordering =’ satisfying '(x,) < #'(x3) < -+ < w'(X,- 1} < 7'(x,). Since F is a minimum
reversing set, we have

XTI +HIX =X uX | 2 Fl = X7 +1X0 1+ L

Thus, since |X{]+|X71+IX1+1X71=2(n~2), we have |X{|+]X]|>
(n — 2). By the pigeonhole principle, there exists a j with 1 < j < n such that both
(xy.x;) and (xj,x,) arein Xy WX, < T.Then(x;,X;,X,) is a 3-cyclein T containing
(xaxy). O
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We have noted that minimum reversing sets are necessarily acyclic. The next
theorem shows that every acyclic digraph arises as a minimum reversing set of some
tournament.

Theorem 7. Let D be a digraph. The following two conditions are equivalent:
(i) D is acyclic.
(ii) D is a minimum reversing set of some tournament.

Proof. If D contains a cycle then so does D®; thus every reversing set must be acyclic.
Conversely assume that D is acyclic. Assume also that the vertices V(D)=
{uy,uz....,u,} are labeled so that there is an acyclic ordering 7 of D satisfying
(uy) < mluz) < -+ < m(w,). We construct a tournament T with minimum reversing
set D as follows, Let V(T) = V(D)u {t;; (;,u;) € D). Let T” be an acyclic tournament
on V(T) with acyclic ordering =’ satisfying #'(1,) < '(4y-1) < -- < @'(4,) and
7'(uj) < ®'(v;;) < @'(w;) for all v;;. This can be done since v;;€ V(T) < (w,u;)e D
= i < j. Thus, corresponding to each arc (i, ;) of D there is an extra vertex v;; which
falls between the ends of the arc in the ordering =",

Note that D® < T, so we candefine T = (T"\D®¥)uD,ie., T' = (T\D)uD~. Since
T is acyclic, D is a reversing set of T.. Also, T = {(u;, u;,v;;): (u;, u;) € D} is a collection
of arc disjoint 3-cycles in T with |z] = |D|. Therefore, by Lemma 5, D is a minimum
reversingset of T. [J

It follows from Theorem 7 that the reversing number r(D) is well defined and that
r(D) < |D|. (1)

We use the notation | D| to indicate the size of the arc set of D when there is no chance
of confusion. This notation is consistent with the idea that we are viewing the arc sets
of the digraphs as reversing sets.

Given an acyclic digraph D and tournament T, if D is a minimum reversing set of
T and no tournament with fewer vertices than T has D as a minimum reversing set
then we say that T realizes D. If T realizes an acyclic digraph D, then r(D) is the
aumber of vertices in V(T)\ V(D). Observe also that if D is an acyclic digraph,
T a tournament that realizes D and ¢ an acyclic ordering of (T\D)u D, then for
every arc (x,y) of D, 6(x) > a{y) + 1.

3. Basic results on reversing number

In this section we make use of basic results on minimum reversing sets to establish
some elementary facts about the reversing number. We first get a bound on the
reversing number of an acyclic digraph in terms of the reversing number of a tourna-
ment by using a more general bound on the reversing number of subdigraphs.
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Theorems 8. Let D' = D be acyclic digraphs on n vertices. Then r(D’) < r(D).

Proof. By Lemma 1, if T is a tournament having D as a minimum reversing set then
there is a tournament T’ on the same number of vertices having D’ as a minimum
reversing set. [

Note here that it is important that both D and D’ have the same number of vertices;
otherwise Theorem 8 is not true. For example a single arc has reversing number
1 (Theorem 13), but many nontrivial acyclic digraphs have reversing number 0 (The-
orem 17).

Corollary 8. For an acyclic digraph D on n vertices, we have r(D) < r(T,), where T, is
the acyclic tournament on n vertices.

Theorem 18 will give some bounds on the reversing number of acyclic tournaments.
These together with Corollary 9 will give general bounds on the reversing number of
any acyclic digraph.

We next take note of several basic results for getting bounds on the reversing
number of an acyclic digraph D.

Lemma 10. For an acyclic digraph D, r(D) = r(D®).

Proof. For any tournament T, (T\D)uDR is acyclic if and only if (TR\D*)uD is
acyclic. Thus D is a minimum reversing set of T if and only if D® is a minimum
reversing set of TR, O

Lemma 11. Let D be an acyclic digraph and let T realize D. If n(v,) < n(v;)
< - <n(v,) is the acyclic ordering of (T\D)UD®, then for any segment
S = 0,0+ 15 .-, U+ j» the number of non-D vertices in S is greater than or equal to the
reversing number of D|s.

Proof. By Lemma 3, D|s is a minimum reversing set of T|s . Thus T|s has at leasi as
many non-D vertices as a tournament realizing D|s. O

Let D be an acyclic digraph with vertex set V. For some v € V, suppose V\ {v} can
be partitioned as ¥} U V5 such that in every acyclic ordering of D, the vertices of

't come before v and the vertices of V'3 come after v. Suppose also that there are no
arcs from V' to V5. Then v will be called an order splitting vertex of D and V' is its
opening set and V', its closing set. By the definition of acyclic orderings, there are also
no arcs from Vi to V.

Lemma 12, If v is an order splitting vertex of an acyclic digraph D, and V', and V', its
opening and closing sets, respectively, then r(D) = r(D,) + r(D,), where D, and D, are
the digraphs induced by V{ = Vi u{v} and V, = V32U {v}, respectively.
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Proof. Let T realize D and n be an acyclic ordering of (T\ D)u D®. Let W, be those
vertices x of V(T') with n(x) > n(v) and W, the vertices x of V(T) with n(x) < =(z).
Note that v is in both of these sets and that V; = W, and V, = W,. By Lemma 11,
(D) <IWi\Vy| and r(D2) <|W:\V,| and so r(D,)+r(D;)<|W,\V,l
+|Wa\Va| =r(D)

To show the reverse inequality, we construct a tournament T’ on
r(Dy) + r(D2} + | V(D)] vertices having D as a minimum reversing set. Let T, realize
D, and T, realize D,. For i = 1,2 denote the vertex set of T; by W;. We can chouse
W, and W, so that W,\{v} and W,\{v} are disjoint. Then (T,\D,)uD} is an
acyclic tournament. Let ' be the acyclic ordering of (T, \ D, )u D} and let w denote
the (unique) source in (T,\D,)uD}. If we V(T,)\V,, then by Lemma 3, D, is
a minimum reversing set of T, \ {w}, contradicting the assumption that T, realizes D,.
If we V| then the reverse ¢ of the ordering on V, defined by =’ is an acyclic ordering
of D, for which v is not the last vertex. Since there are no arcs between V' and V5 in D,
we can combine ¢ with any acyclic ordering (with respect to D;|yv;) of V5 to follow 6.
This gives an acyclic ordering of D for which not all the vertices of V' appear before v,
contradicting the fact that V', is the opening set for the order splitting vertex v. Thus
the source w in (T, \ D,)u D} must be v. In a similar manner, it can be shown that
(T,\D,)uD} is an acyclic tournament with v as a sink.

Let T’ be the tournament formed by joining T, and T, at v with all arcs between
T, and T, going from T to T,. Note that the arc set of T* can be partitioned into
three parts, the arc sct of T, the arc set of T',, and the set of arcs between W\ {v} and
W\ {v}, all of which are directed from W,\{v} to W,\{v}.

Since there are no arcs between ¥ and V5, the arc set of D is partitioned into the
arc set of D, and the arc set of D,. So D = D, uD, and | D] = | D, | + | D,) since these
sets are disjoint. Consider T = (T’'\D)uDR. Since D; is a reversing set of T; for
i=12, T|w, and T}y, are acyclic. (This uses the fact that the arc sets of T}y, and
T|w, are disjoint.) Since also all arcs in T between W, and W, are directed from W,
to W, T is acyclic. Thus D is a reversing set of T'.

Finally, we show that every minimum reversing set of T’ has size | D|, and thus that
D is a minimum reversing sct of T'. If F is a minimum reversing set of T', then
|Fiw,| = |D;| by Lemma 4 and the fact that D, is a minimum reversing set of T"'|yw,.
Similarly, |Flw,| >|D,|. Since the arc sets Fly, and Fl|y, are disjoint,
|F| 2 |Flw,] +{Flw.,| 2 |D,| + | D2| = | D). The last equality follows since there are
no arcs between V' and V' in D. Thus, D is a minimum reversing set of T’ and
D)< Dy +1D;|. O

Recall that the directed path P, on n vertices is the digraph with vertex set
{v1,....0,} and arc set {(v;, 04, ) i=1,...,n—1}.

Theorem 13. Let P, be the directed path on n vertices. Then, r(P,)=n — 1.

Proof. A single arc P, has r{P;) = 1 since it is not a minimum reversing set of itself
(the only tournament on 2 vertices) and it is a minimum reversing set of a 3-cycle. By
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repeated application of Lemma 12 the result follows since every vertex of P, except v;
and v, is order splitting. []

Corollary 14. If D is an acyclic digraph on n vertices containing a directed Hamiltonian
path, then r(D) > n — 1.

Proof. Apply Theorem 8 to the result of Theorem 13. [J

Note that if a digraph has a unique acyclic ordering, then it contains a directed
Hamiltonian path. Then by the corollary, a digraph on n vertices with a unique acyclic
ordering has reversing number at least » — 1. However, when there is not a unique
acyclic ordering, the reversing numbei can be small. The next theorem states a neces-
sary condition for the reversing number to be 0.

Theorem 15. If r(D) =0, then D has at least two distinct sources and at least two
distinct sinks.

Proof. Let V(D) = {v,,02,...,0,}, let T realize D. and let = be the acyclic ordering of
T’ = (T\D)uDR. Note that (v;,v;}zD = =n(t;) > x{r;). Since #(D)=0 and T" is
acyclic, we may assume that n(v;) =i, i = 1,2,....n. Thus, ¢, is a sink of D. If
(v2.v;) € D then j = 1. However, if (v2, v, ) € D then by Lemma 3 applied to vy,v2 = §,
D|s = (va,v,) is 8 minimum reversing set of the (acyclic) tournament on 2 vertices,
a contradiction. Thus v, must also be a sink of D. By a similar argument there must be
at least two distinct sources. [J

4. Smail reversing numbers

We will next consider the smallest reversing number among digraphs on n vertices.
For n = 2, let r, = minr(D), where the minimum is taken over all acyclic digraphs
D on n vertices having no isolated vertices. Also for n = 2, let ry, = minr{D), where the
minimum is taken over all connected acyclic digraphs D on n vertices. Clearly we have
r, <y, forevery n > 2.

In order to calculate these parameters we introduce conditions under which
extending certain digraphs will produce new digraphs without increasing the revers-
ing number. These conditions also prove useful in examining the reversing number in
general and for special classes of digraphs. Let D be an acyclic digraph. let T realize
D and let 7 be a collection of | D| arc disjoint cycles in T. (Note that it is not necessary
that a T realizing D contain such a collection ) Also let S={{x;,y)eT:
i=1,2,...,k} bea collection of arcs from T none of which is an arc of one of the cycles
in 7 and assume that § is vertex disjoint, ie, the x; and y; are all distinct. Let z be any
element not in V(7). We define iwo new digraphs: D', the sink extension of D with
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respect to S, and D", the source extension of D with respect to S, as follows:
V(D)= V(D") = V(D)u{z},
AD) = AD)W{(z.x:) i = 1.2, ...k},
AD") = ADYU{ ¥k i=12,... .k}

We also define T, the D’ extension of T with respect to S, and T", the D” extension of
T with respect to S, as follows. Let M = {x,,....x:} U{¥1. ..., ¥} be the set of vertices
which are endpoints of the arcs in S. Let 7' and T" have vertex sets
V(T'y= V(T") = V(T)u{z} and arc sets

AT = AT)uiaxh 2 i =12k ufezr ve VIT\M],
AT") = AM)o i) vs2xi= L2 kol ) e V(IT\M}.
Finally, we define the extensions 7’ and t” of t with respect to S by

U=t =tu{(Xnpnaki= 12, k}.

Lemma 16. Let D be an acyclic digraph with reversing number r(D), and let T realize D.
Assume also that there is a collection t of | D) arc disjoint cycles in T and a set S of vertex
disjoint arcs in T, none of which is an arc of a cycle from t. Let D’ be the sink extension of
D with respect to S, T' be the D’ extension of T with respect to S, and ¢’ the extension of
T with respect to S. Also, let D" be the source extension of D with respect to S, T” be the
D" extension of T with respect to S, and t" the extension of t with respect to S. Then the
Jollowing hold:

(i') 7" is a collection of |D| + S| arc disjoint cycles in T',

(i) D' is a minimum reversing set of T',
(iii') r (D") < r(D),
and

(i") " is a collection of | D| + |S| arc disjoint cycles in T",

(ii"} D" is a minimum reversing set of T",
(iii”) r(D") < r(D)

Proof. Let S = {(x;,y;) € T:i=1,...,k}. The cycles added to 7 to obtain 7’ = 1" are
arc disjoint from 7 by the choice of S and since z¢ V(T). Thus |T'| = |7"| = |t]| + |S].
Also by the definitions of T’, T", 7, and 1", each of the cycles in ¢’ is in T" and each of
the cycles of " is in T". Thus (i') and (i"} hold.

Note that (T'\ D')u(D')? is acyclic since (T\ D)u DR is acyclic, and that z is a sink
in (T"\D')u(D')*. Analogously, (T "\ D")u(D")* is acyclic with source z. Thus D' is
a reversing set of T’ and D" is a reversing set of T”. By Lemma 5 applied to 7" and ",
minimum reversing sets of 7' and T have size at least {7'| and |7"|, i.e,, each has size at
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least |7] +|S|. Then, since D’ is a reversing set of size [D'|=|D}| +|S|=
Izl +|8] =|7’|, D’ is a minimum reversing set of T’ and (ii’) holds. Similarly, D" is
a minimum reversing set of T” and (ii”) holds.

Note that |V(T')] = |V(T")| = |V(T)| + 1. Since D' is a minimum reversing set of
T, rD)IVIT)| = VD) =IV(T) + 1= (V(D)] + 1) =r(D), and similarly
r(D") < r(D). So (iii’) and (iii”") hold. O

This lemma also provides a foundation for dealing with various special classes of
digraphs. While it is not difficult to construct digraphs with n > 7 vertices with
reversing number 0, we will prove the result for alternating paths as an example of the
use of Lemma 16 in dealing with special classes of digraphs considered in Section 6.

Determining r, and r, for n < 7 requires some case analysis. In order to do this we
review a result of Bermond and Kodratoff [6]. We look at the following upper bounds
on the size of a minimum reversing set of a tournament on n vertices. Let m, denote the
maximum size of a minimum reversing set, where the maximum is taken over all
tournaments on n vertices. Bermond and Kodratoff [6] show that m, =0,
my=myg=1,ms=3mg=4and m,=7.

Theorem 17. ro=ra=Lry=rs=2ry=ri=rs=rs=Lre=0,ro=1 and for
nzhr,=r=0

Proof. We first consider cases when n is small.

Case n = 2; The only acyclic digraph on 2 vertices with no isolated vertices is an arc
which is not a minimum reversing set of itself and is a minimum reversing set of
a 3-cycle. Thusr; =ry = 1.

Case n = 3: Every digraph on 3 vertices with no isolated vertices has at least two
arcs and is connected. So ry = rj. Since m; = m, = 1 there is no tournament on 3 or
4 vertices having a connected digraph on three vertices as a minimum reversing set.
Fig. 1 shows a tournament on five vertices, with a connected digraph on three vertices
as a minimum reversing set, o ry =rjy = 2,

Case n = 4: An acyclic digraph on 4 vertices with no isolated vertex has at least
2 arcs. Since my = 1, we have ry > 1 and ry > 1. Fig. 2 shows a connected digraph on
4 vertices and a tournament realizing it, so ry =y = 1.

A g
‘y
Fig. I. A tournament realizing 2 connected digraph on three vertices, containing disjoint cycles (v,,23.X2)
and (U2, 03,50 )
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NS oA

Fig. 2. A tournament on five vertices realizing a connected digraph on four vertices, containing disjoint
cycles (v, 3. 03 (0r.0a.X) and (r,v3.x,v2)

Fig. 3. A regular tournament on five vertices.

Case n = 5: Any acyclic digraph on 5 vertices with no isolated vertex has at least
3 arcs. Recall that the outdegree d5 (x) of vertex x in T is the number of arcs (x,j) € T.
Consider any tournament T on 5 vertices. If some vertex x in T has outdegree 4 then
x is a source and by Lemma 2, 2 minimum reversing set of T is a minimum reversing
set of T\{x}. Since m, = 1, the maximum size of a minimum reversing set of such
a tournament is 1 and thus T cannot realize a digraph on 5 vertices containing no
isolated vertex.

Consider tournaments T on 5 vertices having no vertex with outdegree 4 and some
vertex x with di (x) = 3. Then reverse the arc for which x is the head to obtain a new
tournament T which has a vertex of degree 4 and, as above, 2 minimum reversing set
of size at most 1. Thus 7" has a reversing set of size at most 2. Then a minimum
reversing set of T has size at most 2 and T cannot realize a digraph on S vertices.

Finally, if T is a tournament on 5 vertices such that df(x) < 2for all verticesxin T,
then T is a regular tournament with all 5 vertices having degree 2. All such tourna-
ments are issmorphic to the tournament shown in Fig, 3. Itis straightforward to show
that all of its minimum reversing scts have three counected arcs and hence contain an
isolated vertex. Thus rs > 1 and r; > 1. Fig. 4 gives an example to show that
rs=1rs= L

Cas:' n = 6: Fig. 5 shows that rg = 0. Any connected digraph on 6 vertices has at
least 5 arcs and since mg = 4, no tournament on 6 vertices realizes a conascted
digraph on 6 vertices. Thus rs > 1 and Fig. 6 gives an example to show that re = 1.
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Fig. 4. A tournament on six vertices realizing a connected digraph on five vertices, containing arc disjoint
cycles (b2.vs.t3), (01,04, %), (03,05, 02) and (3, 05.X)

Fig. 5. A tournament on six vertices realizing o digraph on six vertices, containing arc disjoint cycles
(U3, 6o s ) (U1 V6o 2D (L2, 25 1) and (2,04, 05).

Fig. 6. A tournament on seven vertices realizing a connected digraph on six vertices, containing arc disjoint
eycles (03,05 ) (P2, 04, X (C20 60 U3 ) (U s XD AN (8,00 84
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Case n = 7. We exhibit in Fig. 7 a connected acyclic digraph D, on 7 vertices, along
with a T having D, as a reversing set, and a collection t of 6 = | D,| arc disjoint cycles
in T. Thus r(D,) = 0. This shows that r, =1, =0.

Case n> 8 We will show that alternating paths on n vertices, n > 8, have
reversing number 0. An alternating path is a digraph based on a path graph. That is,
an alternating path is the following digraph 4, or its reversal: ¥(4,) = {v,,...,t,} and
the arc set A(A4,) = {(;,0i-1), (b Ui+ 1 ): § is odd, and both vertices are in V}. Recall
also that Lemma 10 says that #(D) = r(D®) for all D. Thus, in order to prove the result
for all alternating paths it is enough to consider A,.

By our convention of denoting the size of the arc set by |4,|, we have [A4,| =n— 1.
Fig. 8 exhibits a tournament T(Ag) with A as a reversing set. This tournament
contains a set tg of seven arc disjoint cycles and so, by Lemma 5, A4 is 2 minimum
reversing set of the tournament and r(4g) = 0.

Note that (vg, v4) € T(Ag) and this arc is not an arc of any cycle in 7. Denoting the
new vertex z in the sink extension by v, the sink extension of Ag with respect to
S = (g, v,4) has vertex set V(4g)u{re} and arc set A(A4s)u {{vs,r5)}. Thus, the sink
extension is Ag. By Lemma 16, r(4o) < r(4g) = 0. So r(4y) = 0.

For n > 9 we prove by induction that there exist tournaments T(4,) and collec-
tions 7, of arc disjoint cycles in T'(A,) satisfying:

(@) V(T(4,) = V(dn)

(b) T(4,) has 4, as a minimum reversing set.

©) ltpl=n~—1.

(d) If n is odd, there is exactly one arc (v,,t,-1) in T(A4,) with ¢, as its tail, and for
n even, there is exactly one arc (¢,-1,t,) in T(4,) with 2, as its head.

(e) There is exactly one cycle in 7, containing the vertex v,. This is (v,- 1, X,t,) if nis
odd, and (x,v,-1,t,) if n is even for some X 5 vp,Uy-1.

Fig. 7. A tournament on seven vertices realizing 2 connected digraph on seven vertices, containing arc
disjoint cycles (U1, oo Esh (02087, Uo ) (Bs.07.85) (€2, 85, 03D (B30 V6 bs) and (04,84, 82)-
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Fig. 8. A tournament realizing Ag and the set tg = (01,02, 26 ) (U3, 02, U6 ) (€3, 00 U1 L (V5. 83,89 ), (U5, 860 Us)
(v2, V6, t3) and (v7, 05,01 ).

By (a), [V(T (A = |V(4,)]. By (b), r(4,) < |V(T(4:))| = 1V (4,)| = 0. So, proving
that (a) and (b) hold for all n > 9 will complete the proof.

Let T(Ay) be the D’ = A, extension of T'(Ag) and 74 the extension of 7g, both with
respect to (vs,vy). By the definition of the D' extension T(A4s) and since
V(T (Ag)) = V(Ag), we have V(T(4y)) = V(As). So (a) holds. By Lemma 16, T(4s)
has A, as a minimum reversing set. So (b) holds. Also, since |75} = 7 and by the
definitions of the D’ extension T(4s) and the (vy,v,) extension 74 of 7g, it is easy to
check that (c)-(e) hold for n = 9.

Assume by way of induction that the result holds for n. Consider n + 1 even (and
thus n odd), n + 1 2> 10, By (e), and since | V(T (4,))] = 3, there exists a vertex y # x
which is not on the unique cycle (v,- 1, X, v,) € 7, containing v,. By (d), (¥, v,) € T(4,)
since y # v,— and (v, v,-1 ) is the only arc in the tournament with v, as its tail. By (b),
AL S IV(T(AD] —1V(4,)} =0. Since the reversing number is nonnegative,
r(A,) = 0 and thus T(4,) realizes A,. By (c), |7l = 2 — 1 =[4,}. Thus, T(4,) and 1,
satisfy the conditions necessary to take the source extension of 4, with respect to (¥, v,).
This source extension D" of A, with respect to (¥,v,) is A,+,. This follows since if we
denote the new vertex in the extension by v, |, the new arc is (v, t,.+ 1) and since n is odd.

The D" = A, extension T{4,.,) of T(A,) has 4.., as a minimum reversing sei
by Lemma 16. So (b) holds. By induction V(T (4,)) = V(4,). Then by the definition of
the D” = A, +, extension, V(T (Ay+1)) = V(A,+,) and (a) holds.

Additionally, from the construction of the tournament T(4,+,), this tournament
contains exactly one arc (v, vp+,) With v,+, as its head. So (d) holds. Finally, the
extension of 7, with respect to (¥, 0y) iS Tus 1 = TuJ {(¥s Uus Un+1)} and the new cycle is
arc disjoint from the cycles of 7,. S0, |7,+ 1] = |tal + 1 = n. The last equality follows
by induction. So (c) holds. By construction, t,., has exactly one cycle (¥, vs, Un+1)
containing the new vertex v,..,. Thus (¢) holds.
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In a similar manner, for n + 1 odd, by (d) and (e) for n, there is a vertex y in
V(T (A,)) such that-{v,, y) is an arc in T{4,) and such that (v,, y) is not contained in
any cycle of 7,. By (c) and the fact that (a) and (b) imply that T'(4,) realizes A,, the sink
extension of 4, with respect to (v,, y) is defined. Then this sink extension of A, with
respect to (vy, ¥) is A, and in a manner similar to the case when n + 1 is even, it can
be checked that the D’ = 4,4, extension T(4,+,) of T(4,) and the extension 7,+, of
7., both with respect to (v,, ), satisfy (a)—(¢). O

An interesting question is to determine the largest number of arcs a connected
digraph on n vertices with reversing number 0 can have. A similar question can be
asked for reversing number r. To study this we introduce the parameter
d(n,r) = max|A(D)|, where the maximum is taken over all connected acyclic digraphs
with |V(D)| = nand r(D) = r. If no such D exists for a given » and r, then we say that
d(n,r) does not exist.

Since we are considering connected digraphs on n vertices, n — 1 < d(n,r) < (5).
By Eq. (1), d(n,r) 2 r. Since a minimum reversing set of any tournament contains at
most half the arcs in the tournament, d(n,r) < 3("%"). Thus we get

max{r,n — 1} <d(n,r) < min {—;(’ ; n)’(;)} 2

Corollary 9 and Theorem 18 (below) show that d(n,r) is undefined for » > 2n — 4. By
Theorem 17, d(n,0) is defined if and only if n > 7.

Let f(n) be the largest k such that every tournament on n vertices contains an acyclic
digraph with k arcs. It appears that upper bounds on f(n) might provide graphs with
reversing number 0 and a large number of arcs, since there exists some tournament
with n vertices containing no acyclic digraph with f(n) -+ 1 arcs, i.c., minimum
reversing sets of this tournament have at least (§) — f(n) — 1 arcs. The upper bound
S(m) <33 + en®2, ¢ constant, determined by Erdds and Moon [10] and Spencer [33],
would then give digraphs with reversing number 0 and $(§) — en*? arcs. However, this
T ing does not ily work since we assume that our digraphs are connected
and have no isolated vertices, while the digraphs obtained as minimum reversing sets
of tournaments providing the upper bounds on f(r) may have isolated vertices.

Making use of Lemma 16, we can show that for n > 7,d(n,0) > [ (n — 1)*/a ] where
=5+ \/ﬁ (see a preliminary version of this paper, [3]). As suggested by a referee,
making use of Steiner triple systems, one can show d(n,0) > a{n — 1)/6 at least for
n = 1,3 (mod 6). We are also able to show, using a particular “bipartite” digraph, that
(* + n)/4 = d(n, 1) = (n* + 2n)/8 (again, see [3]).

5. Acyclic tournaments

The reversing number of acyclic tournaments is important since it gives an upper
bound on the reversing number of general digraphs as noted in Corollary 9.



56 J.-P. Barthélemy et al. [ Discrete Applied Mathematics 60 (1995) 3976

Theorem 18. For the acyclic tournament T, on n vertices, 2n—4log,n <
r(T,)<2n-4.

Proef. In this proof, all logarithms will be base 2. Let T, be an acyclic tournament
with vertex set V(T,) = {v\,vs,...,v,} such that the acyclic ordering of T, is
T(Va) < AW (Vg-1) < =+ <A(0y).

In order to obtain a lower bound on the reversing number of the acyclic tourna-
ment T, on n vertices we consider a smallest tournament T(T,) having T, as
a minimum reversing set. Since T, is a minimum reversing set of T(T,), the acyclic
order 7 of T(T,) after reversal of the arcs in T, satisfies n(v,) < n(v2) < -+ < n{v,).
By Lemma 3 we may assume that for all vertices u in T(T,), #(v,) < n(») < n(v,) since
otherwise there would be a smaller tournament having T, as a minimum reversing set.
Denote the extra vertices (those not in T,) of T(T,) by u; where z(v;) <
7)) < w(visq)for 1 i < nand,fora giveni, n(u;) < nfu;)or 1 €j <j < x;. Thus
we have denoted the number of extra vertices between v; and v; ., in the acyclic order
7 by x;. Using this notation, the reversing number of T, is 52} xs.

Recall that the backwards arcs relative to an ordering ¢ in T(T,) are arcs
(y,.2)e T(T',) with 6(2) < a(y). For any ordering o of the vertices of T(T,) the numbe:
of backwards arcs relative to ¢ is at least as large as the number of arcs in T, i.e., at
least n(n — 1)/2. This holds since T, is a minimum reversing set of T(T,). By Lemma
3 a similar condition holds for certain subtournaments of T(7,). For any ordering
o of the vertices of T(T,) restricted to a segment (in the order 7) V=
{03050 100 6} {Usr j <1 < k, 1 €5 < x,}, the number of backwards arcs in the
segment relaiive to o is at least as large as (k — j + 1)(k — j)/2, the number of arcs in T,
restricted to the segment.

We make use of one “bad” ordering to get a set of inequalities on the x; which can
then be combined to get a lower bound on the reversing number. This ordering
applied to the subtournament of T(T,) induced by V', places all the extra vertices
t,, to the “right” or “left” (in their natural order consistent with #), and the vertices v,
which appear in T, in the “middle” in the acyclic order #' of T,,. That is, for a given
j<kiforO0<ad <k—-1,1<b<xj:,1 <V <xji,andforc=j,j+1,....k the
ordering & on Vi is given by

() < 6(Upp)esa<a ora=a and b <},

. k—j—1
(U ap) < 6(0)<>a < lw’z—* },

o(v,) < olv)e>e> (.

Fig. 9(a) shows the backwards arcs in the subtournament of T, on V', relative to the
ordering 7 and Fig. 9(b) shows the backwards arcs in the subtournament of T, on
Vi« relative to the ordering 6. From Fig, 9(b) (or from the definitions of T,, 7 and 6), it
can be checked that the backwards arcs in T, restricted to Vi, are: for each
O0<as|(k—j—1/2] @,trap) forj<c<j+aand 1 <b<x;,,and, for cach
Lk —j—D2]<a<k—j Wgrapsv)forj+ta+l<c<kand 1 <b<xju,
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uji UG+ ugi Uek-ni
=1 0% i=lye e Xjor =l xg i=l, Xk

(a) T(T,) ||';_ under the ordering 7.

XX..X we X XX . i e XX...X*" XX..X
"’ Y\ v v vy Y\
Uji UGei Ui g+ Uk-Di
=l X =l R =l [0 PO TR 3 PRO vt

(b) T(To)

N under the ordering o.

Fig. 9. Back dsarcs inthe of T, on V relative to z and 6. (All arcs which are not shown
are directed from left to right in the figure))

Making use of the fact that for each i, there are x; vertices u;;, we have the following
count on the number z of backwards arcs relative to ¢. For given k, j, we have

A-i-t
!_ B Ji+ﬂ Kjva k=j=1 k Xjea
z= ¥ X X1+ ¥ X Xt
a=0 c=jb=1 lekVJV|J+lc=j+“+lb=‘

k=y=1

3 :k—j—l
= Z:o @+ Dxjea+ ;_Z_l tk —j— a)xjsa
a=] = |1
EE T =y

= ¥ it Y inen
i=1

i=1
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In the last line, we have made the change of counters i = a + 1 in the first sum and
i = k — j — ain the second sum. When k — j is cven, both sums have the same number
of terms. Combining these we get

k-j

2

z= Z i(Xjaiot + Xe-i)
i=1
When k — j is odd, the first sum has one more term than the second. Writing the last
term of the first sum separately and combining the remaining terms from both sums,
we get
k-j~1

E k—j+1
z=| Y ixjuiog + Xeoi) +"—";_xj+(t-j-niz-

i=1

Since the number of backwards arcs relative to ¢ is at least as large as
(k —j + Dk — j)/2, we get the following inequalities:

k-j

z:: i(x,”-|+xu—s)>(—,f-:—}—i21Lk:—Q for k — j even, 3)
i=1
kg
& k—j+1 k—j+ Dk—j
Z WXjai-q + X-i) +‘—‘—;—-'¢j+u—j-n/z>(]-l———2—)-(—-——”
i=1
fork—j odd, (]

where the first term in the sum is interpreted as 0 if k — j = 1.

At this point, we have inequalities (3) and (4) which provide lower bounds on
expressions involving the number of extra vertices x;. By taking appropriate positive
multiples of these inequalities and then summing we can obtain an inequality which
provides a lower bound on Y72 !x,, which is the reversing number. In order to
describe the multipliers for the inequalities, we will recursively construct a collection
of inequalities (3) and (4) for which the number of copies of each particular inequality
will provide the multiplier.

For a given p = po, we consider the collection %, of inequalitics defined as follows.
Include an inequality for each 0 < h <| logp |. To obtain the ith inequality, define p,
recursively by py ={ pa-1,/2 } Setj = 1 and k = p,. Then use inequality (3) if k — j is
even, and k # j; the empty inequality Ox, = 0if k = j and the inequality (4) if k — j is
odd, in each case multiplied by 2.

For example, with p = 4 the inequalities in €, are

20+ x3 286 (h=0),
20 23U =1 (=1

{There is no inequality for h = 2, since here p, = l,and j=k = 1))
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Summing the inequalities in €, we obtain an inequality of the form
p-1
Z_:‘ CmXm 2 f(P)-

We demonstrate by induction the following bounds on the values of the coefficients ¢,,
and the right-hand side f(p).
@) cn<p—m.
{b) S {p) = p* — 2plogp.

For p = 2,3 one can easily check that (a) and (b) hold. For p = 4, summing the
inequalities noted above gives

3xy + 2% +x3 28,

which satisfies (a) and (b).

Assume that (a) and (b) hold for numbers smaller than p. Given p > 5 the collection
%, contains one copy of (3) or (4) for j = 1 and k = p and for each inequality appearing
in € 2 the inequality multiplied by two.

Thus, for m > | p/2 |, the coefficient ¢, is p — m by construction. For m <| p/2 |,

c.s[z([gj --m)]+m=2[§J —m<p-m

Here the term in brackets follows by induction on the inequalities in %, which
are multiplied by two, and the final m is the coefficient in the new inequality.
(Note that in the new inequality, we have k # j since k = py.) This proves that (a) holds
for all p.

Now, we show (b). We also have that f(p) > 2(| p/2 |) + p(p — 1)/2. The first term
follows from the inequalities in %) ,»| which are multiplied by two, and the final term
from the new inequality with j = I and k = p. We now use the inductively assumed
bound for f{| p/2 |). For p even, p > 6, we get

roa (s )

2

-7 _ _p)+Bp
—2(4 pllogp l))+2 3

=p*—2plogp +3p

> p* — 2plogp.
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For p odd, p > 5, we get

PR_,P P\, -1 ‘
f(p)az(lz J Z[zJ'”[zJ)* Z ©

__12 2
=2("' ’—(p—l)(log(p—l)—l))+”5—§

2

= p? - 2plog(p — 1)+’5’—% +2log(p— 1)

= p* - 2plogp.

Thus (b) holds.

Similarly to %6,, we can define for a given n, collections %, These include an
inequality for cach h, 0 < h <| logp J. To obtain the hth inequality, let p, = p and
recursively define p, = | pu-1)/2 ] as before. Set j = n — p, + 1 and k = n and use for
the hth inequality (3) if k — j is even and k # j; the empty inequality Ox; > 0 if k = j;
and the inequality (4) if k — j is odd.

The sets of inequalities €, and %, are symmetric in the sense we now make precise.
Consider ¥, whenj = land k = p,and 4, whenj =n — p, + landk = n. Then k — j
is p, — 1 in both cases, so we use the same inequality (3) or (4) in each case. Whenever
in (3) or (4) in €, there is a term ix; = iX;4+;-1, then in (3) or (4) in &}, there is
a corresponding term ix;; = ix,-;. Whenever in (3) or (4) in €, there is a terin
ixg-;=ix, i, then in (3) or (4 in %, there is a corresponding term
iXj4i-1 = iXy-(p,-0- Whenever in (4) in 6, there is a term

k—-j+1 m—1+1 P
'—2—"‘~‘(j+1knj+mz) = "‘“’2—-\‘|+mvl+ w2= 3-\”;2-

then in (4) in %, there is a corresponding term

k—j+1 n-(m—-py+D+1 Pa
5 MU k-H ) = T Nao 1+ (- (= pu+ D= 102 T T Na- prr2e

In all cases, whenever there is a term x,, in the set of inequalities %, chere is
a corresponding term X, -, with tie same coefficient in the set of inequalities €.
As with €, summing the inequalities in ¥, we obtain an inequality of the form

n—1
L a0\
m=g-p+l
where
(ﬂ’) c:l—n s p—m,
(&) f'(p) = p* — 2plogp.
By the symmetry to %, with x,,, replacing x,, (2) and (b’) hold.
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Finally to get a bound on Y72} x; we use the following collection of inequalities:
(i) One copy of inequality (3) or @) forj=1and k=a.
(ii) One copy of the collection 4| ,,» ;
(iii) One copy of the collection 4/, ).

Summing inequalities from (i), (ii), and (iii) we get an inequality

T aune> 0 1) () ™

The right-hand side of this inequality is the sum of the bounds for (i), (ii), and (iii).

For the coefficients d,, on the left side of the inequality, note that in | .  the only
nonzero cosfficients are for {x, ..., VL., 2j-1} and in %], the only nonzero coeffi-
cients are for {X,_{n2 s 1---2Xa-1}. Note that 2 —| #/2 [+ 1 =[#/27+1 so the
nonzero coefficients from (n) and (iif) do not overlap. Consider the coefficient d,, for
m<| n/2] In this case, do <( n/2)-—m)+ m < n/2. Here the first term is the
coefficient from (ii) with the bound (a) and the final m is the coefficient of x,, in (i). For
dp if m>[n/27, we get the same bound from (iii) and (a’} and (i). When n is even
X2 appears only in (i) and has coefficient n/2. For n odd, x; 2 and x> appear only
in (i) with coefficient | n/2 | So the coefficients d,, are all less than or equal to n/2.

Also note that substituting the bounds (b) and (b") for f (| n/2]) and f* (| #/2]) into the
right-hand side of (7) we get the same right-hand side as in (5) and (6) with n instead of
p. Thus, as in (5) and (6), we get the right-hand side of (7) greater than or equal to
n? — 2nlogn. Using this bound and the bound d,, < n/2, we get from (7) that

g:gl Xp 2 E X ?%"2_-"]—) +I(EJ|> +f(EJ) >n* — 2nlogn.

Hence,

Z X2 - (n — 2nlogn) = 2n — 4logn,

m=1
giving the desired lower bound on the reversing number of T,.

For the upper bound we construct 2 tournament 7 on 3n — 4 vertices with T, as

a minimum reversing set when n>4. Let T, have acyclic ordering
(vy) < m(va-q) < -+ < m(vy). Let T’ be an acyclic tournament with vertex set
V(T') = V(T )u{ug, tm-1yo} i 2 < i <n—2,j= 0,1} and acyclic ordering 7’
satisfying #'(vy) < 7'(ty1) < ®'(v2), T'(0;) < 7'(io) < 7'(w;y) < W' (v;ey) for 2<i <
n—2, and #'(Uy-1) < W(te-1)0) < T(v,) Since TH < T’, we can define
T =(T'\T})uUT,. T,is shown in Fig. 10. By the construction of T, T,, is a reversing
set of T. To show that T, is 2 minimum reversing set of T we consider the following
set 7 of n(n — 1)/2 triples:

T=1,UTUTs,
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Fig. 10. T with T, as a minimum reversing set. (All arcs which are not shown are directed from left to right
in the figure.)

where
= {(Vs,u(k.,.osj)yU;)Z I<i<jsn—1}, 12 = {1, Ugn 10 ta)}»

T3 = {{U Ui V) 2< i< — 1}

ky = l’-;J and ;= (j - Hmod2.
(Notice that, if n > 4, these triples are indeed constructed with 2n — 4 “extra™ vertices,
i.e., we need no #y9 OF Y-y to build them.)

It is casy to check that the orientation of the arcs of these triples is such that every
one of them is in fact a 3-cycle. So it is enough to verify that these n(n — 1)/2 3-cycles
are arc disjoint to complete the proof. First, notice that if we have k;;0;; = k.., and
i =rorj = s, then(i,j) = (r,5). So, if two 3-cycles from 7, U t, have a common arc (two
common vertices), then it is the same 3-cycle. Therefore, the 3-cycles from 7, U7, are
arc disjoint. On the other hand, the 3-cycles from 7, Uz, are obviously arc disjoint.
Finally, consider a 3-cycle from 7,: (v;, g, 4,0, v;) With 1 < i <j < n — l,anda3-cycle
from 73: (v, 4,0, v,) With 2 < r < n — 1. If they had a common arc, it would necessarily
be the arc (v,, u,0), and then we should have i = r and (v;, u,,.0,)) = (Vi tiip). But this
equality is not pdssible, since k;;=iandj>iimplyj=i+l,andso d;;=1. O

We note at this point that we could set up an integer linear program to minimize the
sum of the x; subject to inequality (3) or (4) for all j and &k with 1 <j <k < n. The
solution of this would provide a bound on the reversing number. It would be
interesting to see if the bound derived from this integer program is tight. The
multipliers used in the collection of inequalities used in the proof of the lower bound
can be viewed as variables in a dual feasible solution to the linear program obtained
by relaxing the integer constraints. Notice that the upper bound 21 — 4 is not tight in
all cases, as can be seen in Table 1, which lists exact values of #(T,) for small n. The
values in this table have been calculated by special cases of the techniques in the proof.
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Table 1
Exact values of #(T,) for small n

n 2 3 4 S5 6 7 & 9 10 1

T,) 1 3 4 6 8 10 1 4 15 17 19

6. Reversing numbers of acyclic digraphs in some special classes

In this section we compute the reversing number for acyclic digraphs in various
special classes.

6.1. Stars

Let a directed star S, be a digraph on n vertices with a distinguished vertex v
such that all arcs in S, contain v as either head or tail. Note that S, contains n — 1 arcs
and by our convention of denoting by |S,| the size of the arc set of S,, we have
|Saf=n—1.

Theorem 19. If S, is a directed star on n vertices then r(S,) =n — 1.

Proof. By Lemmas 10 and 12, we may assume that S, is the directed star in which
v = vo is the kead of all arcs, ie., S, = {(vi,2o): i = 1,2,...,n — 1}. Let T realize S, and
let = be the acyclic ordering of (T\S,)USR. Since (vo,v:) €Sk, n(vo) < 7(vi),
i=12,...,n— 1. Without loss of generality, a(vy) < z{v;) < w(v2) < -+ < wvp-1):
Also, by Lemma 2, we may assume that there are no “extra” vertices w, i.e., vertices in
V(T)\V(S,), such that =({w) > n(v,-;) or m(w) <=a(ve) For i=12,....n—1, let
there be k; extra vertices X;;,X,...,Xy, between v;_; and » in =, ie,
v;-1) < mxy) < (e} for j= 1,2, ..., k;.

Note that Y77} k; =r(S,). Let X = {(vo, %k i=12,...,n—1, j=12,...,k}.
Then X < T and (T\ X)u X is acyclic, with the acyclic order =’ obtained from = by
making v, a sink instead of a source and maintaining the acyclic order among the
other vertices. That is, 7'(4) = n(u) — 1 for u # ve and n'(ve) > 7'(v,-1) > n'(u) for all
ue V(T). Since S, is 2 minimum reversing set of T,

X2 |8 =n—-1

Note that | X| = ¥7-} k; = r(S,). Therefore, 7(S,) > n — 1. Letting k; = 1 for all i gives
a tournament of 2n — 1 vertices containing the n — 1 arc disjoint 3-cycles (x;y,v;, vo),
i=1,...,n— 1, with S, as a reversing set and thus a minimum reversing set by
Lemmas. [
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6.2. Disjoint arcs

As mentioned above, there exist digraphs whose reversing number is 0. An example
will be the disjoint union of n arcs, the graph we denote by E,.

Theorem 20. r(E,) = r(E;) =1, and r(E,) =0, n > 3.

Proof. Note that E, = P,. Therefore, by Theorem 13, r(E,) = 1.

By Theorem 17, #(E,) > 0 since E, has only 4 vertices. Let T’ be given by the
digraph in Fig. 11. E, is clearly a reversing set of T'. Also the two arc disjoint 3-cycles
(v, vy, x) and (vg, 03, v3) imply that the reversal of one arc of T’ will not produce an
acyclic tournament. Therefore, T~ realizes E; and #(E,) = 1.

Let n > 3 and let the E, be defined by

V(E,) = {v1,02, ..., 024},
A(E,) = {(Vn+ 1,01 (Vg 2,02) oo, (0200 L)}

Let T’ be the acyclic tournament on V (E,) with acyclic ordering z such that z(v;) = i.
Note that E} © T'. Let T = (T'\ E})UE,. Hence, E,, is a reversing set of 7. Next, we
will exhibit n arc disjoint 3-cycles in T. Since there are n arcs in E,, this will imply by
Lemma 5 that E, is a minimum reversing set of T, i.e., T realizes E,. Therefore, since
V(T = V(EL r(E,) =0.

Let

T = {(1 V2, tar 1) (P2, 03,002 2)s oov s (B 1,vn~l’zn—1)}0{(”n-l'2n—2-l‘2.-)}-

Itis an easy exercise to see that 7 contains n arc disjoint 3-cycles from T, provided that
nz3 0O

6.3. Complete bipartite digraphs

In this section we compute r(Kp,,), where

V(Kpn) = {01,025 e sy Ut 1, o0 11}

S,

Fig. 11. T’ realizing E..



J.-P. Barthélemy et al. | Discrete Applied Mathematics 60 (1995) 39-76 65
and
AKp) ={Cnwi=1,...om j=1,...,n}.

K. will be called a complete bipartite digraph.

We will make use of Latin rectangles in the next proof. An m x n Latin rectangle
with entries from a set S of n distinct elements is an array with entries from S such that
no element of S appears twice in the same row or in the same column. It is not difficult
to show, using for example Hall's marriage theorem, that m x n Latin rectangles exist
for m = 1,...,n (see for example [30]).

Theorem 21, (K, ,) = max{m,n}.

Preof. By Lemma 10, we may assume that max{m,n} =m.
First we show that r(Km.) <m. Let T’ denote the acyclic tournament on
V(Kpn)U{x1,X2,..., X0} With acyclic ordering = such that

ru) =14, i=12...n
ax;)=n+j, i=12...m
) =n+m+k k=12,...m

Note that KR , = T". Let T =(T'\KR ,)UK,... Hence, K,, . is a reversing set of T

Since there are mn arcs in K, ,, if we can exhibit mn arc disjoint cycles in T, this will
imply by Lemma 5 that K, , is a minimum reversing set of T and hence r(K, ) < m.
Let L be an m x n Latin rectangle with entries from x,, X5, ..., X,. Consider the mn
3-cycles (u;, L;;.v;) for 1 <i<mand 1 <j<n Since L is a Latin rectangle, { # '
= Lj# Ly;andj#j = L;# L. Thus the mn 3-cycles are arc disjoint.

Next, suppose that r(K.,.,) < m. Therefore, there exists a tournament T with
minimum reversing set K., such that |V(T)| < m + n + m. Without loss of general-
ity, we may assume that the acyclic ordering 7’ of the vertices of T’ = (T \ K JU K% »
satisfies

) <) < - <a'(u,) <T(0)) <a'(V3) < - <7 (V).

Let {x;,X2,...,X;} be the extra vertices in T, ie., {X1,%z .., X} = V(T\V(Kn.a)
and note that k < m. Also note that every directed cycle in T must contain an arc of
the form (u;,x;) where 7'(w;) < 7'(x;). Let X = {(u;,x;): #'(w;) < '(x;)} = T. Thus
X is a transversal of the cycles and by the remarks in the introduction, the minimum
size of a transversal is equal to the size of a minimum reversing set. Thus the size of
a minimum reversing set of T is at most | X | < kn < mn = |K,, ,|. This contradicts the
assumption that K,,, is a minimum reversing set of T. Therefore r(K,.,) > m.
Combining the two inequalities we have r(K,, ,)=m. O

Notice that the result for complete bipartite digraphs yields an alternative proof of
the result on stars since K, -, is a directed star.
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6.4. Alternating paths

We have shown in the case n > 8 of the proof of Theorem 17 that the reversing
number of alternating paths on eight or more vertices is 0. We now determine the
reversing number of all alternating paths.

Theorem 22. Let A, be an alternating path on n vertices. Then,

1 if n=24,56,7,
r(A,)=(2 ifn=3,
0 ifn=8

Proof. As noted in the proof of Theorem 17, Lemma 10 says that r(D) = r(D®) for all
D. Thus, we may assume that A, is labeled with vertex sct {v,,...,v,} and arc set
{(Wis Vi+1), (Vi, vi-1): § is 0dd, and both vertices are in ¥ }. The cases n 2> 8 were shown
in the proof of the case n = 8 of Theorem 17. Thus we must consider the cases n < 7.

Case n = 2,3: Note that A, and A4, are directed stars on two and three vertices,
respectively. Thus, by Theorem 19, r(4,) = 1 and r(4;) = 2.

Case n =4,5,6: By Theorem 17, r(A,),r(As),r(Ag) > 0. Fig. 12 shows directed
tournaments T'(4,), T'(A4s), and T'(4¢) on 5, 6, and 7 vertices, respectively, which
can easily be shown to have reversing sets A4, As, and A, respectively. Also, in Fig. 12
we list 3, 4, and S arc disjoint cycles from T'(4,), T'(A4;), and T'(A), respectively, to
show that T'(A4), T'(As), T'(A¢) realize Ay, A5, A, respectively. Thus r{4,) = r(ds)

=r(ds) = 1.

Case n = 7. We show that r(4,) < 1, by the tournament in Fig. 13.

Next we must show that 4, is not a minimun. reversing set of any tournament on
7 vertices. Suppose that there exists a tournament T* on 7 vertices with 4, as
a minimum reversing set.

We first show that the outdegrees of 7* must be in {2,3,4}. If there were a vertex
x in T* with d7.(x) = 5 or 6 (respectively 0 or 1), then by reversing at most one arc,
a tournament 7" with x as a source (respectively sink) is obtained. Recall the result of
Bermond and Kodratoff [6], used in Theorem 17, that ms, the size of a largest
minimum reversing set for a tournament on 6 vertices, is 4. Then T}y 7., « can be
made acyclic with at most four reversals and, by Lemma 2, the size of a minimum
reversing set of T* is at most five. Thus all outdegrees in T* must be 2,3 or 4.

The outdegrees in T* cannot all be 3, since in any reversing set the vertex which
becomes the sink after reversal must be contained in three arcs which are reversed and
there is no such vertex in A,.

Thus, since the sum of the outdegrees of vertices in T* is n(n — 1)/2 = 21, the
muitiset of outdegrees for T* must be one of {2,3,3,3,3,3,4}, {2,2,3,3,3,4,4}, or
{2,2,2,3,4,4,4}. The outdegrees after reversal of the arcs in a minimum reversing set
are {0,1,2,3,4,5,6}. Since the arcs of A, are those which are reversed in T* to make
the tournament acyclic, we see that the changes in outdegrees from T* to
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(&) T"(A;) containing arc disjoint cycles (vy, v3, e} {r3. 2, X, v1) and (03, b4, X}

(b} T'(A4;s) containing arc disjoint cycles (vy. 02, X {3, U2, s) (U3, U, Uy ) and (05, 24, X).

AaN)

NASTAN S N7 A o e
RN

(c) T'(Aq) containing arc disjoint cycles (. 02, Uk (V3. U2, X) ('3, Vg, U3 ) (Us, Uy X) and (vs, 06, U3).

Fig. 12. Tournaments realizing alternating paths A4, As, As.

(T*\ A7) A5 must be exactly three increases by two, two decreases by two, and two
decreases by one. It is easy to see that these changes cannot transform the outdegrees
{2,3,3,3,3,3,4} into {0,1,2,3,4,5,6}. Thus {2,3,3,3,3,3,4} cannot be the multiset of
outdegrees.

Consider next the case of {2,2,2,3,4,4,4}. Every tournament contains a Hamil-
tonian path (see for example [14]). Applying this observation to the subtournament of
T* induced by vertices of outdegree 4, we see that we can find x,y,z with
(x,¥), (1 2) € T* and d7.(x) = df+(y) = di+(z) = 4. Consider an acyclic tournament in
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Fig. 13. Tournament with 4, as a mini ing set ining arc disjoint cycles (ry,e3. XM
{3, va o) (U3, U0 XD (Bsutsa 02), (Ui PosU3) ANG (09,0604 )

which x is a source, y is beaten only by x, and z is beaten only by x and y. That is, the
acyclic order for T has n(x) < n(y) < n(z) and =(z) < n() for all v # x, ). Here, two
reversals in T* are needed to make x a source. In T*, y was beaten by two vertices,
one of which was x, so one reversal is needed to put y in order. Also = was beaten by
iwo vertices, y and another (possibly x), so at most one more reversal is needed to
place z third in the acyclic order. Finally the remaining vertices form a tournament on
four vertices; since mg = 1 at most one additional reversal is needed to make these
acyclic. Thus an acyclic tournament T can be always obtained from T* with at most
five reversals, two for x, one for y, at most one for z, and at most one for the remaining
vertices. Hence A, cannot be a minimum reversing set of a tournament with outdeg-
rees {2,2,2,3,4,4,4}.

Finally, consider the outdegrees {2,2,3,3,3,4,4}. Denote by X = {x;,x,} the
vertices with outdegree four, Y = {y,,¥,, ¥} the vertices with outdegree three, and
Z = {z,,z,) the vertices with outdegree two. Since each vertex is contained in a total
of six arcs, both x, and x, are the heads of two arcs. Assume without loss of generality
that x, beats x3, ie., (x;,x;)e T*,

Consider first the case that there exists a vertex in Y (with outdegree three) which is
beaten by both x; and x,. Without loss of generality assume that this vertex is y, . Since
di«(y;) = 3 and y, is beaten by both x; and x,,y; must beat three of the four vertices
{¥2.¥3,21,22}. The acyclic order with a(x;) < 7(x2) < z{y,) and n(¥,) < () for all
v € {¥2,¥3.21,22} can be obtained from T* as follows: Two reversals for the arcs with
X, as head, one reversal for the arc other than (x,.~;) with x; as head, ore reversal for
the arc from ihe one vertex in Y ¥3,21.22) beating »,, at most
one reversal to put the four vertices {y;.¥3.2).z2} in acyclic order. The last
point follows since m, = 1. Thus an acyclic order is obtained from T* with a total of at
most five reversals, showing that 4, is not a minimum reversing set of such a tournament.
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Otherwise, there is no vertex in Y beaten by both x, and x,. If this is the case,
(xi»z;)€ T* for i, j = 1,2. This follows since x, beats three of the vertices and x; beats
four of the vertices among Y U Z and no vertex in Y is beaten by both x; and x;. Then
X must beat two of the vertices in Y and x, must beat one vertex in Y and these must be
distinct. So we may assume that (x;,yih(xz2,¥20(x2,¥3)€T* (and that
e X2 (2.1 W (03, X1 ) € T*). Then T* is as shown in Fig. 14. Consider the acyclic
order with z(x,) < z{}1) < n(x;) and n(x2) < =lv) for ve {y2,¥3,21,22}. This is ob-
tained from T* by at most five reversals; two for reversing (y2,x;) and (1, x, ), two for
the two arcs from a vertex in {y2,y3,7;,22} with y, as head (since d7(y;) = 3), and at
most one to put {¥,,¥3,2;.22} in acyclic order. The last point follows since m, = 1.
Thus A- is not a minimum reversing set of T* in this case, completing the proof that T*
cannot have outdegrees {2,2,3,3,3,4,4}. This completes the proof that r(4,) #0. O

6.5. Alternating cycles

Let AC,, be the alternating cycle on 2n vertices (2 > 2), that is, the graph for which
there exists a numbering such that X, = {x;{1 <i < 2n} is the set of vertices and
Az = {{x2i- 1 X2)] 1 TSR} U{(X204 1. %2) | 1 SES 0 — 1}U{(x1,X2,)} is the set of
arcs. We now prove the following theorem.

Theorem 23. Let AC,, be the alternating cycle on 2n vertices (n > 2). Then we have:
H{AC,;) = r{ACe) = 2, r(ACg) = 1; and r(AC,,) =0 for n = 3.

Proof. Case n = 2: Note that AC, is the complete bipartite digraph K ,. Thus, by
Theorem 21, we have r(AC;) = 2.
Case n = 3: Note that an alternating path AP, on six vertices is a subgraph (on the
same vertex set) of ACs. Thus, by Theorems 8 and 22, we have r(4ACs) > L.
Suppose that /{ACs} = 1. Then there exists a tournament T* on seven vertices with
AC, as a minimum reversing set. We first show that the outdegrees of T* must be in

Xy
i
Zy
y2
z;
Y3
X2

Fig. 14. T*. (Al arcs which are not shown may have any orientation.)
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{2,3,4}. If there were a vertex x in T* with d7.(x) = 5 or 6 (respectively 0 or 1), then by
reversing at most one arc, tournament T with x as a source (respectively sink) is
obtained. Recall the result of Bermond and Kodratoff [6], mentioned before the proof
of Theorem 17, that ms, the size of a largest minimum reversing set for a tournament
on 6 vertices, is 4. Then T |yr+, can be made acyclic with at most four reversals and,
by Lemma 2, the size of 2 minimum reversing set of T* is at most five. Thus all
outdegrees in T* must be 2,3 or 4.

Thus, since the sum of the outdegrees of vertices in T* is n(n — 1)/2 = 21, the
multiset of outdegrees for T* must be one of {3,3,3,3,3,3,3}, {2.3,3,3,3,3.4},
{2,2,3,3,3,4,4}, or {2,2,2,3,4,4,4}. The outdegrees after reversal of the arcs in
a minimum reversing set are {0, 1,2,3,4,5,6}. Since the arcs of ACs are those which
are reversed in T* to make the tournament acyclic, we see that the changes in
outdegrees from T* to (T *\ ACs) U ACE must be exactly three increases by two, three
decreases by two, and one vertex with no change (corresponding to the “extra™ vertex).
It is not difficult to check that of the four possible multisets, only {2,2,3,3,3,4,4} can
attain {0,1,2,3,4,5,6} by these reversals. Thus, we consider this case.

In order to transform {2,2,3,3,3,4,4} into {0,1,2,3,4,5,6} by the reversal de-
scribed above it is necessary that the outdegree of the extra vertex is three. For
i=0,1,...,6, let v; denote the vertex with outdegree i in the tournament
(T*\ AC¢)U ACE. Note that v, is the extra vertex and that vo, vy, and v, are the
sources in AC¢ and v,, vs, and vg are the sinks in ACq. Note also that (ve,vs), (Ve. Vs),
and (ve, v3) are all arcs of T* since they are arcs of (T*\ ACs)u ACh and not arcs of
ACg. Then, since dr+(vs) = 4 (iis outdegree was increased by two), it must be that
(ve,v;)€ T* for exactly one of j=0, j=1, or j=2. We consider each of thesc
possibilities separately. In each case we exhibit a reversing set of size five, contradic-
ting the assumption that T* has AC, as a minimum reversing set.

If (v, v2) € T*, then (v3,vs) and (va, v4) are both in AC, and thus in T* Consider
the acyclic ordering 7(ve) < ®(v2) < m(vs) < n(vy) < w(vy) < w(vy) < w(vy). This
is obtained by reversing the same four arcs on V(T*)\{v,} as those on AC, (which
is the subgraph induced on AC¢ by these vertices) and the arc (v3,v2), a total of five
arcs.

If (ve,vy) € T, then (vy.vs) and (vy,v4) are both in ACs and thus in T*. Also,
(v2.v6) € T* by assumption and exactly one of (vs, v;) and (v4, v2) is in T *. Consider
the acyclic ordering n(v2) < n(v6) < 7(vy) < A(vs) < 7vs) < 7(v3) < (Vo). This is ob-
tained by reversing the two arcs on the subgraph of AC with v, as tail, the arcs (v3, v2)
and (v3, v,), and the arc from {(vs, v2), (vs, v2)} that is in T*, a total of five arcs.

If (vs, vo) & T*, then (vo, vs) and {vo, vs) are both in AC; and thus in T*. Also, for
J=12, (v;,ve)e T* by assumption and exactly one of (vs,v;) and (vs,v;) is in T*.
Consider the acyclic ordering n(v;) < n(v1) < w(ve) < (o) < 7(vs) < w(vy) < 7(v;).
This is obtained by reversing the arcs (v, v;) for i = 1,2,3 and for j = 1,2, the arc from
{(vs,v;)(vq,v;)} that is in T*, a total of five arcs.

To complete the proof of the case n = 3, we exhibit in Fig. 15 a tournament T on
eight vertices with AC, as a minimum reversing set, showing that r(4Cs) < 2.
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Fig. 15. T on cight vertices with AC,, as a mini ing set, ining arc disjoint cycles (vo. Xy, vs),
(g X 03 b (U2 X000 L (Pou Xau Uy b (240.X2.05) and (L2, x2.03).

Fig. 16. T on nine vertices with ACg as a mini ing set, ining arc disjoint cycles (vo, U, b7 )
o, o0y ) (Vau XU ) (Vs 01, 23\ (U6, X0 07) (P60 02, Us) (U2, X003) and (t2.07,81)

Case n = 4: We first show that r(ACg) # 0. Let x be the vertex which is the source in
the acyclic order of the tournament obtained by reversing the arcs of ACg in
a tournament T with ¥V (T) = ¥(ACg) that realizes ACs. By Lemma 3, the alternating
path on seven vertices obtained by deleting the vertex x from ACs is a minimum
reversing set of the tournament T restricted to V(T')\ {x} = V(ACg)\ {x}. This would
be a tournament on seven vertices with an alternating path on seven vertices as
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Fig. 17. T on ten vertices with AC,, as a minil ing set, ining arc disjoint cycles (o, 2. tol
(€0, 03,81 ) (L2 Laa U3 ) (20U Er ) (U8 01007, (Fna Voo o) (Vo UaaU7) (Lo 030 Bs) (PasTo 3) and (Ba.0y. 1)

a minimum reversing set, contradicting r(4,) = 1, which was shown in Theorem 22.
Thus, r(ACg) 2 1 and in Fig. 16 we exhibit a tournament on nine vertices with ACy as
a minimum reversing set. So r(ACg) = 1.

Case n = 5: Fig. 17 exhibits a tournament on 10 vertices with AC,, as a minimum
reversing set, showing that r(4Cyy) = 0.

Case n 2 6: Let m = 2n — 1, Consider T'(A4,,) and 7, as constructed in the proof of
the case n 2 8 of Theorem 17. By conditions (€) and (b) of that proof, (v, Uy -1 ) is the
only arc in a cycle of z,, containing v,, and (v, tw) € T{A,). It can easily be seen that the
extension from A4, to 4., can be done so that (v,0,1) € T(4,0) is not an arc of any
cycle of 1,4 (see condition (e) of the proof). Then, (v,¢,¢,) € T(A4,,) for m 2 10 since
T(A,0)is a subtournament of the tournaments constructed by the extensions. Addition-
ally, since (¢4, v, ) is not an are of a cycle in 7,0, it is not an arc of a cycle in 7, (m > 10)
by the construction of the t extensions. Let S = {{vy0.4 ), (2, Un)}. Since m 2 11, the
arcs of S are vertex disjoint. We have already noted that the arcs of S are not arcs of any
cycle of t,,. Thus, we can form the source extension of 4, with respect to S. The result is
ACpyy = AC,, and, by Lemma 16, we have r(AC3,) = 0 since r{d,-,)=0. O

6.6. Arborescences

An arborescence is a rooted tree on n vertices (# > 2), with the arcs directed so that
there is a (directed) path from the root to every vertex. Let RT, denote an arborescence
on n vertices. 1t is well known that an arborescence on n vertices contains n — 1 arcs.



J.-P. Barthélemy et al. | Discrete Applied Matkematics 60 (1995) 39-76 73

Theorem 24. Let RT, be an arborescence on n vertices. Then r(RT,)=1 and
2<r(RT,) <n—1 for n>3 and the bounds are reached.

Proof. The upper bound is immediate from Eq. (1) and the fact that arborescences on
n vertices have n — 1 arcs. By Theorems 13 and 19, the upper bounds are attained by
the directed paths P, and stars with a unique source, both of which are arborescences.

For n = 2, the only arborescence on two vertices is the path P, with reversing
number one (by Theorem 13). For n = 3, the only arborescences on three vertices are
the alternating path A; and the directed path P,, both with reversing number two (by
Theorems 13 and 22).

Consider the case n = 4. Let RT; be any arborescence on four vertices. RT; has
three arcs. Recall the results of Bermond and Kodratoff [6] regarding m,, the largest
number of arcs in a reversing set on a tournament on k vertices mentioned before the
proof of Theorem 17. We have m;, < 3for k < 5so RT, is not a minimum reversing set
of any tournament on four vertices, i.e., (RT;) > 1. It is casy to show (see [4]) that
the only tournament on five vertices with a minimum reversing set of size ms = 3 is the
regular tournament on five vertices (see Fig. 3), and that the minimum reversing sets of
this tournament are not arborescences. So r(RT,) > 2.

Fig. 18 gives an example of an arborescence on 4 vertices and a tournament on six
vertices realizing it. This shows that the lower bound is attained for n = 4.

Finally, we consider # > 5. We must show the lower bound and show that this
bound is attained.

Let p, denote the minimum value of the reversing number for an arborescence on
n vertices. We first show that p,., <p,. Let RT, be an arborescence such that
r{RT,) = p, and let T be a tournament on n + p, vertices realizing it. By Lemma 2,
the vertex which is the unique source of (T\ RT,}'u RT¥ is a vertex of RT, and thus
must be a leaf of RT,. Call this leaf x. Let RT, -, denote the subarborescence of RT,
induced by V(RT,)\ {x} (i.e., the arborescence obtained by deleting x and its incident
arc from RT,). Also, let T’ be the subtournament of T induced by V(T)\{x}. By
Lemma 3, RT,-, is a minimum reversing set of T'. Thus r(RT,-,) < p, (since

Fig. 18. A tournament on six vertices with an arborescence on four vertices as @ minimum reversing set.
containing arc disjoint cycles (£3.02.84 ) (¢'2. X0, to) and (£7.X;.80)
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Fig. 19. A tournament on seven vertices with an arborescence on five vertices as a minimum reversing set,
containing arc disjoint cycles {xo, X2,y ) (X2, X1, U2 ) (X1 Yo, Uy ) and (Ca.p.0 )

|[V(T)\V(RT,)| = V(T'’\V(RT,-;)] = p,). We have already shown p; =2, so
pa=2fornzs.

To show that the lower bound is attained, we exhibit first in Fig. 19 a tournament
on seven vertices realizing an arbc e on five vertices.

For n 2 5, we prove by induction that there exist tournaments T,, arborescences
RT, (on n vertices), and collections , of arc disjoint cycles satisfying:

@) V(T =n+2

(b) T, has RT, as a minimum reversing set.

©) ltal=n—1

(d) RT, has at least three leaves xg,X;, X2,

(e) The arc (xo,x;) is in T, but is not an arc of any cycle of t,.

Showing (a) and (b) wili complete the proof as this shows that »(RT,) < 2 and we
already have that #(RT,) > 2. So r(RT,) = 2.

For n = 5, (a)-(e) are satisfied for the example of Fig. 19. The source extension of
RT, with respect to (xo.x,) gives RT,.,, and the extensions of 7, and T, give
To+1 and T, y. By construction of the extensions and by Lemma 16, (a)-(c) hold.
Denoting the new vertex in the extension by v, we see that RT,,.. , has leaves xo, v and
X2. So (d) holds. Also, (¢) holds for the arc (v,x;) which is not an arc of any cycle of
Ta+re O

7. Conclusion

The acyclic order obtained after reversal of the arcs in a minimum reversing set can
be used as a ranking of the players in a round robin tournament. In this case the
minimum reversing set rep inconsistencies in the ranking, those cases where
player a beats player b but a is ranked below b. The reversing number is defined by the
minimum number of additional vertices in a smallest tournament in which a given set
of inconsistencies can arise. It would be interesting to determine the exact value within
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the bounds 2n — 4logn < r(T,) < 2n — 4 of the reversing number of the acyclic
tournament on n vertices. It would also be interesting to examine exact values of the
reversing number on other classes of acyclic digraphs, or for exampi= to find an
expression for the exact value of the reversing number of any arborescence. Another
open question is to determine bounds on d(n, 1), the largest arc size of a connected
digraph on n vertices with reversing number r. We have not been able to show that
d(n,r + 1) > d(n,r), even though this seems plausible.

Calculation of the reversing number in general seems difficult. (Note that determin-
ing the reversing number would seem to require calculations of the size of minimum
reversing sets and dhat that problem is NP-hard.) We currently do not know the
complexity status of determining the reversing number. In fact, we do not even have
algorithms for determining the reversing number for any class of acyclic digraphs.

Finally, recall that the minimum reversing sets arise as the sets of backwards arcs
relative to a ranking which minimizes the number of backwards arcs. It would be
possible to examine sets of arcs which arise as the backwards arcs under different
ranking procedures, for example a ranking based on outdegrees. A similar question of
determining the size of a smallest tournament in which a given acyclic digraph is the
set of backwards arcs under an “optimal” ranking can be asked. (See [17], where this
question is asked for a weighted version of the reversing number, which is equivalent
to using a ranking based on score sequences.) Such computations might provide
another way to evaluate ranking procedures for tournaments.
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