
Scheduling Rooted Forests with Communication

Delays

Garth Isaak∗

Abstract

We show that a greedy algorithm for scheduling unit time jobs on two ma-
chines with unit communication delays produces an optimal schedule when
the precedence constraints are given by a rooted forest. We also give a
min/max relationship for the length of such a schedule. The min/max result
(for forests and two machines) shows that the addition of unit communica-
tion delays increases the optimal schedule length by at most one.

1 Introduction

We consider scheduling to minimize the maximum completion time with two ma-

chines, unit time jobs, unit communication delay and precedence constraints given

by a rooted forest. The general problem of scheduling with communication delays

arises in parallel processing. We will focus on proving a min/max result and simul-

taneously showing that a simple greedy algorithm produces an optimal schedule.

The min/max result shows that the length of an optimal schedule is d(|F |+Q)/2e

where Q maximizes over non-leaf jobs x, the number of jobs preceeding x plus 2

minus the number of jobs incomparable to x. (Q is 0 if this quantity is aways

negative.) Using this, we show that if td is the length of an optimal schedule when

communcication delays are present and tn is the length of an optimal schedule

with no communication delays, then td = tn or tn + 1.

∗Department of Mathematics, Lehigh University, Bethlehem, PA 18015
The author thanks Ivan Rival for bringing this problem to his attention.
Partially supported by a grant from the Reidler Foundation

1

More formally, we view the problem as follows. An order (F,�), with diagram

a disjoint union of rooted trees (a rooted forest), is given. Sometimes, precedence

constraints are given as digraphs, in which case we would be dealing with out

forests. The elements are to be labeled with an ordered pair (m, t) ∈ {1, 2} × N

such that

if x 6= y and m(x) = m(y) then t(x) 6= t(y) (1)

if x � y then t(x) < t(y) (2)

if x � y and m(x) 6= m(y) then t(x) + 1 < t(y) (3)

Such a labeling will be called a schedule. Its length is the maximum value of t

assigned to an element.

In terms of scheduling, the elements of the order represent jobs, the first co-

ordinate represents the machine on which the job is processed and the second the

time of processing. Equation (1) ensures that two jobs cannot be processed at the

same time on the same machine. Equation (2) gives the precedence constraints,

if x precedes y then x is scheduled before y. Equation (3) adds communication

delays to the precedence constraints. If x precedes y and x and y are scheduled on

different machines, then x is scheduled at least two time units before y, to allow

one time unit for communication. This arises if we consider the jobs being pro-

cessed on a simple model of a parallel computer, if job x is executed on a different

machine from y, then one time unit is needed for the machines to communicate.

Scheduling subject to the constraints (1) and (2) is well studied. See for ex-

ample [3], [4], or [7], for surveys. When scheduling with communication delays,

we add constraint (3). See [1] or [10] for surveys of this problem and its vari-

ants. Scheduling with delays, m machnes and an arbitrary precedence order is

NP-complete (Rayward-Smith [8]). The problem remains NP-complete even if the

precedence constraints are given by a rooted tree and the number of machines m is

part of the input (Lenstra, Veldhorst, Veltman [5]). If the precedence constraints

are a rooted forest |F | and the number of machines m is fixed, Varvarigou, Roy-

chowdhury and Kailath [9] give an O(|F |2m) algorithm for scheduling with delays.

With two machines and a general order the complexity remains open, in contrast

to the case with no delays, where several efficient algorithms are known.

2

After completing the first version of this paper, we discovered that a number of

other efficient algorithms for scheduling rooted forests with two machines and com-

mmunication delays have been given. In addition to the algorithm of Varvarigou,

Roychowdhury and Kailath [9] mentioned above, there is a quadratic algorithm by

Picouleau [6] and linear (in |F |) algorithms by Lenstra, Veldhorst and Veldman

[5] and Lawler [2]. It appears that our algorithm is different from these others and

it has an advantage of simulataneously allowing proof of a min/max result. We

will focus more on the min/max result and the relationship to scheduling without

delays than on the details of our algorithm.

2 Min/Max result and the algorithm

We will use the notion of idle machine/time units. For a given schedule S with

length t, the idle time idle(S) is the number of pairs (i, j) with j ≤ t not assigned

to some element of the tree. This sums the idle time over both machines. Note

that if there are n jobs, then the length of an optimal schedule S is (n+ idle(S))/2.

For an element x in F let

PF (x) = {y ∈ F |y � x} and IF = {y ∈ F |y ∼ x} and S(x) = {y ∈ F |x � y}.

Here ∼ denotes incomparability (x ∼ y iff neither x � y nor y � x). So I(x) is

the set of elements with no precedence relation to x, P (x) the elements preceding

x (plus x) and S(x) the elements succeeding x (plus x). The subscript F will be

used only when necessary to distinguish between several forests. We will call the

unique immediate predecessor of x in the forest the parent of x.

Let

QF (x) = |PF (x)| + 1 − |IF (x)|.

A non-leaf element x is one for which some elements follow it, i.e., |S(x)| ≥ 2. Let

QF be the maximum value of QF (x) over non-leaf elements x if this is positive and

let QF = 0 otherwise.

If the path to x is scheduled consecutively on one machine, and elements incom-

parable to x are scheduled on the other, and there are more elements on the path

than incomparable to x, then |P (x)| − |I(x)| units of idle time are forced. Q(x)

3

represents a measure of this idle time. If this quantity is positive and x is non-leaf

then an additional idle unit appears during the succeeding time period since at

most one successor of x can be scheduled. Hence the +1 term in the definition of

Q(x). If Q(x) is maximum, any schedule which does not first schedule the path to

x will have even more idle time, so Q(x) represents the maximum amount of idle

time. This is the idea behind the lower bound of the min/max theorem. We will

use the algorithm to show that there is a schedule achieving this bound.

In the example of figure 1, observe that in the tree (without the isolated ele-

ments), Q is three, from the element scheduled at time 6 by the ‘box’ machine.

Thus any schedule will have length at least d(12 + 3)/2e = 8 and this is attained

by the schedule shown in the figure. The extra isolated elements in the figure can

be considered dummy elements to fill the idle time as will be done in the proofs

that follow.

Theorem 1 Let (F,�) be an order with diagram a rooted forest. The minimum

length of a schedule on F with two machines and unit jobs and unit communication

delays is equal to

⌈

|F | + QF

2

⌉

.

Greedy Algorithm for Scheduling

Input: A rooted forest F .

Starting with time t = 1 repeat the following to select elements to be scheduled at

time t. Select x and y that maximize |S(x)| + |S(y)| among all pairs x, y that can

be simultaneously scheduled at time t subject to the precedence and communication

constraints.

Observe that this greedy procedure will pick x and y with two largest |S|’s

unless both have the same parent and that parent was scheduled at time t − 1,

i.e., both must be scheduled on the same machine if scheduled at time t. It is

not difficult to see that this algorithm can be implemented in O(|F |) time if F is

represented by the forest of covering relations.

4

Theorem 2 Scheduling a rooted forest by the greedy algorithm produces a schedule

with minimum length.

To prove both Theorem 1 and Theorem 2, we need to prove that the bound
⌈

|F | + QF

2

⌉

of Theorem 1 is indeed a lower bound on the schedule length and that

the greedy algorithm produces a schedule attaining this bound.

Proof of the lower bound for Theorem 1:

Let S be any schedule for F . If QF = 0 the bound is immediate. Let x be

a non-leaf element with Q(x) > 0. Any element succeeding x must be scheduled

after x. Since a path of length |P (x)|−1 precedes x, the earliest x can be scheduled

is at time |P (x)|. So t(x) ≥ |P (x)|. At most |P (x)|+ |I(x)| elements are scheduled

by time t(x). There are 2t(x) machine/time units during this period. So idle(S) ≥

2t(x) − |P (x)| − |I(x)| ≥ 2|P (x)| − |P (x)| − |I(x)| = |P (x)| − |I(x)| = Q(x) − 1.

Additionally, if all of I(x) is scheduled before time t(x) + 1, then one machine is

idle at time t(x) + 1 due to communication delays (since only one successor of x

can be scheduled at time t(x)+1 in this case). If some element in I(x) is scheduled

at time t(x) + 1, then there is an extra unit of idle time before t(x) + 1 as at most

|I(x)| − 1 elements are scheduled by t(x) in this case. In either case, there is an-

other unit of idle time and idle(S) ≥ Q(x)−1+1 = Q(x). So the bound follows. 2

For an instance of the algorithm running on a forest F , let Fi be the rooted

forest of elements scheduled at time i or later. So F = F1. Also, for x ∈ Fj, let

Ij(x) denote IF (x) restricted to Fj.

Lemma 1 Let S(x), with root x be a component of Fj, j ≥ 2. If |S(x)| ≥ 2 +

|Ij(x)|, then the parent p of x was scheduled at time j − 1 by the greedy algorithm.

Furthermore, S(p) is a component of Fj−1 with |S(p)| ≥ 2 + |Ij−1(p)|.

Proof: Assume that p is scheduled earlier, in Fj−1 there is a component C at least

as large as S(x), whose root gets scheduled at time j − 1 instead of x. Only the

root of this component can be scheduled at time j − 1 so |C| − 1 elements remain

5

in Fj. Thus, |S(x)| − 1 ≤ |C| − 1 ≤ Ij(x), a contradiction. So p is scheduled at

time j − 1 and S(p) is in Fj−1. At most one other element is also scheduled at

time j − 1, so |Ij−1(p)| ≤ |Ij(x)| + 1. Here we have used y ∼ p ⇒ y ∼ x for p the

parent of x. Since also |S(p)| ≥ |S(x)| + 1, |S(p)| ≥ 2 + |Ij−1(p)| follows. 2

Proof that the greedy algorithm produces a schedule with length

⌈

|F | + QF

2

⌉

:

It suffices to prove that the algorithm works when QF = 0. If QF ≥ 1, add QF

isolated elements (roots) to form a new forest F ′. The new isolated elements are

leaves, hence do not affect QF ′ . (Note it is also this assumption that an isolated

element is a root as well as a leaf that allows QF = 0 in the case that F consists of

one or two isolated elements.) If x ∈ F is not a leaf, then QF ′(x) = QF (x)−QF ≤ 0.

So QF ′ = 0. Then F ′ is scheduled with minimum length

⌈

|F ′| + QF ′

2

⌉

=

⌈

|F ′|

2

⌉

=

⌈

|F | + QF

2

⌉

.

If an element of F and a new element are both eligible to be scheduled when

applying the greedy algorithm to F ′, both are isolated in the forest of unsched-

uled elements. Select the element from F in this case. Then the schedule for F ′

restricted to F is the same as that produced by the greedy algorithm applied to

F .

Assume QF = 0. We need to show that at each time, except possibly the last,

d|F |/2e, there are at least two distinct elements that can be scheduled. There

are at least two roots in the forest, otherwise the single root r has Q(r) = 2,

contradicting QF = 0. So two elements are scheduled at time t = 1.

Let t be the first time (if any) during which at most one element is scheduled.

Assume for contradiction that t < d|F |/2e. One of the elements scheduled at time

t− 1 is a leaf, since if both have sucessors, two sucessors will be scheduled at time

t. Let p be the non-leaf element. Then Ft−1 is the disjoint union of S(p) and

an isolated element. There can be no other elements in Ft−1 since they would be

eligible to be scheduled along with a successor of p at time t. Note that there are

at least two elements scheduled at time t or later since t < d|F |/2e. So |S(p)| ≥ 3.

6

Since |S(p)| ≥ 3 and |It−1(p)| = 1, we may apply Lemma 1. By repeated

application of this lemma, we see that there is a path v1, v2, . . . , vt−1 = p in F

with vi scheduled at time i. Furthermore, there are at most t − 1 other ele-

ments in F that are not in Ft (i.e., the elements scheduled by time t − 1). Then,

QF (p) = |PF (p)| + 1 − |IF (p)| ≥ (t − 1) + 1 − (t − 1) = 1, a contradiciton to the

assumption that QF = 0. 2

There are number of other structural result about Q and F that are not difficult

to prove. For example, if x is a non-leaf element such that QF (x) = QF then for

every other element y (including leaves) with QF (y) = QF , either x is on the path

from a root to y or vice-versa. From this, one can see that the algorithm sched-

ules during times 1, 2, . . . |P (x)| the path to x on one machine and the remaining

elements not below x on the second machine. For any element x, it is easy to see

that if S = S(x) and y is a successor of x then QS(y) + QF (x)− 2 = QF (y). With

such straightforward observations variations on the greedy algorithm (for example

a recursive algorithm) can easily be given.

3 Comparison to Non-delay Schedules

In this section we use Theorem 1 to show that the addition of communication

delays increases schedule length by at most one (for the case of rooted forests and

two machines).

There is a known min/max result for schedule length, m machines and rooted

trees when no communication delays are present. See for example Poguntke [7].

We will state the case when m = 2 using the notation of this paper. Let Q̃(x) =

|P (x)| − |I(x)| and let Q̃F be the maximum value of Q̃(x) over non-leaf elements

x if this is positive and let Q̃F = 0 otherwise. So, Q̃F = QF − 1 whenever QF > 0

and Q̃F = 0 when QF = 0. Then the minimum length of a schedule subject to

conditions (1) and (2) is d(|F |+Q̃)/2e. It is straightforward to check that this is just

a restatement of the known min-max result as presented in Poguntke [7], viewed

from the perspective of idle times rather than levels. Rather than introducing the

notation of Poguntke to show this, we sketch a proof which is nearly identical to

7

that given in Section 2.

From the proof of the lower bound for Theorem 1, delete the extra idle time

at t + 1 due to communication delays. Then idle(S) ≥ Q(x) − 1 = Q̃(x). If x is

scheduled at time j and |S(x)| ≥ 1 + |Ij(x)| then the parent p of x is scheduled at

time j − 1 and |S(p)| ≥ |Ij−1(p)| + 1. This is just a non-delay version of Lemma

1. The proof is analogous, except there must be at least two components C1 and

C2 with size at least |S(x)| in Fj−1. If |S(x)| = 1 the result is trivial to check.

Otherwise, |S(x)| ≤ (|C1| − 1) + (|C2| − 1) ≤ |Ij(x)|. The rest is the same as the

proof of Lemma 1. Finally, if t is the first time when one element p is scheduled,

then Ft consists of the single component S(p). Applying the non-delay version of

Lemma 1 stated above, we get |P (p)| = t and at most t − 1 other elements. So

|I(p)| ≤ t−1 and we get the contradiction Q(p) ≥ |P (p)|− |I(p)| ≥ t− (t−1) = 1.

Let td(F) denote the minimum schedule length (with two machines) subject to

(1), (2) and (3), i.e., with communication delays and tn(F) the minimum length

of a schedule subject to (1) and (2), i.e., with no delays.

Corollary 1 Let F be a rooted forest. Then td(F) = tn(F) or tn(F) + 1. The

second case occurs only if for x such that QF (x) = QF > 0, |S(x)| is odd.

Proof: Any schedule for the problem with delays is also feasible for the problem

with no delays. Hence tn(F) ≤ td(F).

If QF = 0 then Q̃F = 0 and both schedules have length d|F |/2e. Assume

QF > 0. Then QF − 1 = Q̃F . By Theorem 1 and the observations above

td(F) =

⌈

|F | + QF

2

⌉

=

⌈

|F | + Q̃F + 1

2

⌉

≤ tn(F) + 1.

Additionally, tn(F) + 1 = td(F) exactly when |F | + QF is odd.

|F |+QF = (|P (x)| + |S(x)| + |I(x)| − 1)+(|P (x)| + 1 − |I(x)|) = 2|P (x)|+|S(x)|.

This is odd exactly when |S(x)| is odd. 2

We conclude by asking about a bound for m machine scheduling with delays in

terms of non-delay schedule lengths. Let tdm(F) and tnm(F) denote the m machine

analogs of tn(F) and td(F). It seems reasonable to conjecture that tdm(F) ≤

8

tnm(F) + blog2 mc. Corollary 1 is a special case. One reason for this is to look

at complete binary trees as a potential ‘worst case’. Let Bh denote height h order

with the complete binary tree as diagram (i.e., 2h leaves and2h+1−1 elements). Let

h = blog2 mc. Then it is easy to check that tdm(Bh) = 2h+1 and tnm(Bh) = h+1.

Adding a chain of arbitrary length above the root or equal length chains below

each leaf gives the bound for arbitrary size forests.

4 References

1. Chretienne, P., and C. Picouleau, Scheduling with communication delays: A

survey, in Proc. Summer School on Scheduling Theory and its Applications,

1992, to appear.

2. Lawler, E.L., Sceduling trees on multiprocessors with unit communication

delays, manuscript, 1993.

3. Lawler, E.L. and J.K. Lenstra, Machine scheduling with precedence con-

straints, in I. Rival (ed.) Ordered sets, Reidel, 1982, 655–675.

4. Lawler, E.L. and J.K. Lenstra, A.H.J. Rinooy Kan, and D. Shmoys, Sequenc-

ing and scheduling: algorithms and complexity, in S.C. Graves et al. ed.,

Handook in operations research and management science, vol. 4; Logistics of

production and inventory, Elsevier, 1993, 445–522.

5. Lenstra, J.K., M. Veldhorst and B. Veltman, The complexity of schedul-

ing trees with communication delays, manuscript, preliminary version in T.

Lengauer ed., Algorithms - ESA ’93, Lecture notes in Computer Science 726,

Springer-Verlag, 1993, 284–294.

6. Picouleau, C., Etude de problemes d’optimisation dans les systemes dis-

tribues, Ph.D. thesis, Univ. Pierre et Marie Curie, Paris, 1992.

7. Pogunkte, W., Order-theoretic aspects of scheduling, in Combinatorics and

Ordered Sets, in I. Rival ed., AMS Contemp. Math. vol 57, 1986, 1–31.

9

8. Rayward-Smith, V.J., UET scheduling with unit interprocessor communica-

tion delays, Disc. App. Math. 18 (1987) 55–71.

9. Varvarigou, T.A., V.P. Roychowdhury and T. Kailath, Scheduling in and out

forests in the presence of communication delays, manuscript, 1992.

10. Veltman, B., B.J. Lageway and J.K. Lenstra, Multiprocessor scheduling with

communication delays, Parallel Computing 16 (1990) 173–182.

10

