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1. Introduction

The sct of inconsistencies in a tournamenl T for a given ranking are those arcs
{x.,4) € A{T") such thal z is ranked above . That is, the cases where player T *heats”
player i, but y receives a better ranking than z. A number of ranking proccedures
[or tournaments and Lheir associated sets of inconsislencies have been described and
studied in the literature. (See, for example, Slater [1961], Moon [1968].)

Following a question posed by J.P. Barthelemy, we can change our perspeclive
and ask the lollowing: For a given acyelic digraph D, is A( D) the sct of inconsislen-
cies for some tournament under the ranking procedure under consideration? If so,
determine the size of the smallest such tournament. In Barthelemy et al. [1991], this
fuestion is examnined for the ranking procedure which minimizes Lhe size of the set of
inconsistencies. In this paper we examine this quesiion for a ranking procedure which
minimizes “weighled™ inconsistencies. This procedure is shown lo be equivalent to
ranking by non-increasing outdegrees, i.e., score sequence. We call the number of ex-
Lra vertices, e, Lhose vertices besides V(D) in a smallest lournament T with A 1))
as Lhe sel of inconsislencies under a ranking based on non-inereasing ouldegreos in
T, the weighted reversing number of I and denote it by w(D). We will show that
w( D) can be calculated by examining all acyclic orderings of D. For example, if D
contains a Hamiltonian path, i.e., V{D) has a unique acyclic ordering, then there is a
polynomial procedure to compute w(D). We also determine w(D) for certain classes
of acyclic digraphs. Finally, we compute an upper bound of [%J -1 on w(D), for
any acyclic digraph D on n > 4 vertices, if w(D) is defined and D has no isolated
vertices.

A tournament T = (V(T), A(T)) is a digraph with vertex set V(T') such that for
cach pair 2,y € V(T'), exactly one of the arcs (z,y) or (y,z) is in A(T). Note that we
will use V and A for the vertex set and arc set, respectively, when there is no possibility
for ambiguity. We will also use D to refer to either the digraph D, the vertex set of
[}, and/or the arc set of D) when there is no possibility for ambiguity. We think of
V(T) as the players in a competitive lournament in which each pair of players meets
exactly once. The arc (z,y) indicates that player x “beats™ player y. A digraph is
eyelic if it contains a set of arcs of the form: (x4, 22), (22, 23), . - o (Tine 12 Ton ) (Tons T ).
Otiherwise, it is acyclic.

An ordering 7 of digraph D is a bijection of the form = : V(D) — {1,2,...,n},
where (v} is interpreted to be the spot in the order of player v and =~'(s) indicates
the player ordered ™. If (z,y) € A(D) implics x(y) > #(z) then = is an acyelic
ordering of D). Also, df(v) will denote the outdegree of vertex v in D, ie., the
number of arcs of [} of the form (v,w). Similarly, dp(v) will denote the indegree
of vertex v in D, i.e., the number of arcs of D of the form (w,v). Finally, we let
n = |V[T], unless otherwise indicated.
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A ranking procedure assigns to each tournament T = (V, A) a sct of rankings.
Each ranking o is a bijection of the form ¢ : V — {1,2,...,n}, where o(v) is
interpreted to be the rank of player v and ¢~'(i) indicates the player ranked i**.
With respect to any ranking o of a tournament T, the sel of inconsistencies, I, (T),
equals {(z,y) € A(T) : a(z) > a(y)} = {(¢7'(:),07'(j)) € A(T) : i > j}. It is easy
to see that [,(T) induces an acyclic digraph.

Assume that a certain ranking procedure R is under consideration. Given an
acyclic digraph D = (V, A), we define the R inconsistency realizing number of D to
be the number of extra vertices, i.e., |V(T)\ V(D)|, in a smallest tournament 7' for
which there is some ranking o assigned to T’ under R such that D = I,(T). We say
that such a T realizes D under T2. If there is no T realizing D under R then we define
the R inconsislency realizing number of D) Lo be infinite.

Given a tournament T and a ranking o of T, let

R, = ¥, 2 T
(e~')e M NET  (=wleT
iy a(y)<e(z)
Then R, = |I,{T)|. We call the ranking procedure which assigns to each tournament
those rankings which minimize R,, the minimum inconsistencies ranking procedure.
As noted in Barthelemy et al. [1991], it has been shown by a number of authors that
the sels of inconsistencies under this ranking procedure are equivalent Lo minimum
feedback arc sets, minimum transversals of the cycles of the tournament, and the
complement of a maximum acyclic subdigraph. The inconsistency realizing number
with respect to Lhis procedure is examined in Barthelemy et al. [1991]. They call this
the reversing number and denote it by r(D). In this paper we examine a weighted
version of the minimum inconsistencies ranking procedure.

2. Weighted Reversing Number

In a minimum inconsistencies ranking, inconsistencies in which the player ranked
n'* beats the player ranked first and the player ranked second beats the player ranked
first are considered “equally bad.” It scems reasonable to consider a ranking proce-
dure which gives some weight to the dilference of the rankings of players who are
ranked inconsistently. The simplest such weighting assigns a weight of j — 1 to the
inconsistency (r,y) € T if y is ranked i** and r is ranked j**. Note that the weights
are always positive. Given a tournament T and a ranking o of T, let

W, = B i—i= Y. o(z)-aly).
(e~ (3) e =" (i))eT {=.9)ET
i<y ely)<e(z)

We define the minimum weighted inconsisiencies ranking procedure to be the proce-
dure which assigns to each tournament all rankings which minimize W,.

Let the score ranking procedure be the procedure which assigns to each tournament
all rankings such that

Fe™(1)) 2 di(e7(2)) 2 - 2 di (@™ (n)),
equivalently,

dr(e™'(1)) € dp(e7(2)) £ -+ < d7(a7(n)).
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Thus the score ranking procedure ranks by non-increasing outdegrees, equivalently,
by non-decreasing indegrees.

We make the following observation. For completeness, we include a short proof.
Observation: The minimum weighted inconsistencies ranking procedure and the
score Tanking procedure are the same procedures.

Proof: Let & be a fixed ranking of tournament T. We may assume that the vertices
are labeled so that ¢7'(i) = i. For X C V(T), let in(X) denote the number of arcs
(i,7) such that i @ X and j € X, i.e., the number of arcs entering X. Hence,

Xy | 3 d'[u}] s (';’”),

v X

Thus,

n—1
Wem Y od—tm 3 -N0 1
{iaeT k=1 i<k<)
idF {76)ET

n—1

= Y. in({L,2...,k})

- Blgeo-()

n—1 k n=1
= -3 (2) + E{n — kY= (k).
k=1

The first term is fixed for a given tournament and the second is clearly minimized by
non-decreasing indegrees. O

Let w(D), the weighted reversing number of D, be the inconsistency realizing
number with respect to the minimum weighted inconsistencies ranking procedure.
Given a digraph D, let the surplus of v in D be given by

i) = { ib(0) - d5(0) » € V(D)

The following lemma will play an important role in examing w(D).

Lemma 1 Let T be a tournament, o be a ranking of V(T), and assume that the
vertices of T are labeled so that o~ '(i) = i. Let D be the digraph induced by the arcs
which are inconsistent with the ranking (i.e., D = I,(T)). The ranking o is assigned
to T under the minimum weighled inconsistencies ranking procedure if and only if

eplj) <en(j —1}+1, i=2,3,...,n.

Proof: Note that if J,(T) = @, then the outdegree of vertex i equals n — 1 since
o~Vi) = i. Il I,(T") # §, then the arcs which are inconsistent with o are the arcs
of D. In either case, df(i) = d§(i) — dp(i) + n — i. Therefore, since the minimum
weighted inconsistencies ranking procedure and the score ranking procedure are the
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same procedures,

() < dG-1)
db(j) - dp(j) +n ~j ; dh(i —1) —dp(i —1) +n - (j - 1)
BN TIER SR R
) o ep(f 1) +1. 0

Let T be a tournament on V(D) U X realizing D under the minimum weighted
inconsistencies ranking o. Then D} = [,(T) and there is no tournament T with
IV(T")| < |V(T)| and I(T') = D for some o' assigned to T under the minimum
weighted inconsistencies ranking procedure. Clearly, if T realizes D) under the min-
imum weighted inconsistencies ranking o then o='(1),07'(n) & X. Il o~(1) € X,
then a contradiction is reached by removing it and hence producing a smaller Lour-
nament with [} as the set of inconsistencies under the same (induced) ranking. A
similar contradiction is reached if ='(n) € X.

The following lermma shows that no two vertices in X can appear conscculively
in a minimum weighted inconsistencies ranking and that these vertices appear only
under restricted conditions.

Lemma 2 et T be a tournament on V(D) U X realizing D wnder the sminimum
weighled inconsistencics mnking . Assume that e7Yi) =i, Ifz e X, then o — |
and x 4 1 are both in V(D) and furthermore, ep{z — 1) = ~1 and ep(z + 1) = +1.

Proof: Consider a maximal consecutive sequence in the ranking & containing k vertices
all of which are frorm X. That is, assume that for some { < j, we have z € X for
t<z<j,j—i=k+l,andi, e V(TI\X=V(D). Lt X' = {i+1,...,5 -1}
and n = |V([) U X|. By Lemma 1,

ep(i)+(n—j) Sep(i~1)+(n—j+1) <--- S ep(i+1))+{n—i=1} < ep(i)+(n-1).
Recalling that eg(z) =0for z € X, ie, 2 ¢ V(D),
ep(j)+(n—j)€n—j+1<n—i—1<ep(i)+(n—1i).

So, ep(7) £1 and ep(i) = —1. Also, ep(j) < ep(z) + (7 —1).

Consider the tournament TY, with the vertices of X’ deleled, under the ranking
o' consistent with & {i.e, o7} =lfor I=1,...;iand e” () =1+ (j —i = 1) for
I=i+41,...,n—(j—i—1)). This amounts to setting j =i¢+1,7+1=i+2, ..., and
n=n-—{j—:-1). Note that D is the set of arcs inconsistent in 7" under &', In T"
under «', the condition of Lemma 1 holds except possibly at j =i+ 1. Hep(j) <1
or if ep(z) > —1, then

ep(j) £ epli) + 1.

llenee, by Lemma 1, o' is a minimum weighted inconsistencies ranking of TV, contra-
dicting the minimality of T. Thus, eg(i) = —1 and ep(j) = 1.

Finally, if |X'] > 1, then consider the tournament T¥ = (T'\ X") U {i + 1}, under
the ranking o’ consistent with & which amounts to setting j =1+2, j+1 =143, ...,
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and n =n —(j —i —2). Note that [} is the set of arcs inconsistent in T” under ¢'. In
T under &', the condition of Lemma 1 holds except possibly at j =i + 2. However,

ep{j) < f.Dl:i L 1} +1

since ep(j) = 1 and ep(i + 1) = 0. Hence, by Lemma 1, ¢’ is a minimum weighted
inconsistencies ranking of T, contradicting the minimality of T. Thus, |X'| = 1, with
r+l=jandzr—-1=1: 0

Theorem 3 An ecyclic digraph D) has w(D) finite if and only if there is an acyclic
ordering * of I such that fori=1,...,|V(D)| -1, either

ep(r7'(i)) S ep(r (i +1)) + 1 (1)

" ep(z7 (1)) =1 end eg{m (i + 1)) = —1. (2)

Furthermore, let w, be the number of occurrences of (2) under v, Then w(D) is the
minimum valie of w, under all acyclic orderings = of D.

Prool: The prool follows immediately from Lemma 2. O

Mote that Theoremn 3 gives a complete characlerization and a polynomial proce-
dure for determining w( ) when acyclic digraph D contains a Hamiltonian path (i.e.,
has a unique acyclic ordering).

Corollary 4 [f acyclic digraph D conlains a Hamillonian path and 1,2... ,n is the
unique acyclic ordering, then w(D) is infinite if ep(z) > ep(i + 1) + 2 for some
lL<i<norifepli)=-epli+1)+2 with ep(i) # 1 for some 1 <1 < n. Otherwise,
w(D) is equal to the number of i such that ep(i) =1 end ep(i + 1) = —1.

3. Exact Values for w(D)

Theorem 3 provides an immediate characterization of w(D) for certain classes of
acyclic digraphs.

Corollary 5 Lel P, be the directed path on n vertices. Then, w(P;) =1 and w(P,) =
0forn=>=3.

Proof: Let V(P,) = {1,2,...,n} and A(P,) = {(1,i +1) |i = 1,...,n —1}. For
n =2, P, is a single arc and the unique acyclic ordering 1, 2 satisfies ep,(1) = 1 and
erl2) = —1. 5o, by Theorem 3, w(FP) = 1. For n > 3, the unique acyclic ordering
1,2,...,n satisfies ep (1) =1, ep,(n) = —l and ep (i) =0 for 2 <i <n —1. So, by
Theorem 3, w(P,)=0. O

Corollary 6 Lel T, be the acyclic tournameni on n verlices. Then, w(73) =1 and
w(T,) is infinite forn = 3.
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Proof: T3 = F,. Hence, w(l}) = 1 by Corollary 5. For n > 3, let T, be labeled
so that (i,7) € T, if and only if 2 < j. Then, the unique acyclic ordering of T, is
1,2,...,n. Hence, ep(l} =n —12>1 and ep(2) = n — 3. So, by Theorem 3, w(T,)
is infinite. O
An allernating path AP, is a digraph with vertex set {1,2,...,n} and arc set

either

{{#,i —=1),(z,1 4 1) : 2 is odd, and both vertices are in V}

or
{{;# —1),(i,1 4+ 1) : i is even, and both vertices are in V}.

Corollary T Let AF, be an alternating path on n > 2 vertices. Then w(AP,) =1 if
n is even and w{AP,) is infinile if n is odd.

Proof: When n = 3, the set of eyp, values is either {—2,+1} or {=1,+2}. When n
is odd, n = 5, the set of eqp, values is either {—2,+1,42} or {~2, =1, +2}. Clearly,
there is no acyclic ordering satisfyving the conditions of Theorem 3.

Ifn =2, then AP; = F; and w({F;) = 1 by Corollary 5.

For n even, n > 4, we may assume that AP, is labeled so that the arc set of
AP, is {{1,1 = 1),(1,i+ 1) :10dd,3 €1 < n =1} U {(1,2)}. Hence, eqp (1) = +1,
eap(n) = =1, eap (i) = 42 foriodd, 3 <i < n —1 and eqp, (i) = =2 for i even,
2 <1 £ n—2 Thus, the set of eqp, values is {+2,41,-1,-2}. For any acydlic
ordering 7 of AP, satislying Theorem 3, it is easy to check that (2) in Theorem 3
must oceur al least once, i, w{AF,) = 1. Let = be any ordering of V(AP,) with
(1) =nf2, #(n) =nf2+1, (i) < nf2 for i odd, and 7(1) > n/2 + 1 for { even. It
is not dillicult to check that = is an acyclic ordering of AF,. Note that either (1) or
(2) in Theorem 3 holds for i = 1,2,...,n. That is, w(AP,) is finite, Also, (2) occurs
exactly once. 5o, by Theorem 3, w{AF,)=1. O

A connected graph which is regular of degree two is called a circuil graph. As a
special case, the next corollary applies to acyclic orientations of circuit graphs.

Corollary 8 Let R, be an acyclic digraph on n vertices whose underlying graph is
r-reqular, Then

1 r=1

infinite  else.

w(f,) = {

Proof: If i, is 1—regular, then n must be even and the set of ep, values is {—1,+1}.
So, w(f,) = 1 by Theorem 3. We finish the proof of this case by showing that
w(R,) £ 1. Without loss of generality, let A(R,) = {(1,2),(3,4),...,(n = 1,n)}.
Note that 1,3,...,n — 1,2,4,...,n is an acyclic ordering of R, and by Theorem 3,
w(fln) < 1.

Suppose that r > 2. Note that for any acyclic ordering x of Ry, en,(7~'(1)) =+
and eg,(77'(n)) = —r. Also, the absolute difference between any two ep, values is
even. So, since the eg, values are a subset of {—r,—r+2,...,r = 2,7}, there is no
acyclic ordering satisfying the conditions of Theorem 3. Thus, w(R,) iz infinite for
r>2. 0

Next, we consider unions of disjoint acyclic digraphs.
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Corollary 9 Let T, be the acyclic tournament on p > 2 verlices. Then,

1 m=n=2
w(laUTp)=41 0 Im—=—n|=1
infinite clse.

Prool: Let T, be labeled so that (z;,z;) € T if and only if i < 7. Next, let T,n be
labeled so that (y;,y;) € T il and only if ¢ < j. Then, the unique acyclic orderings of
1, and T\, are z,,23,...,T4 and ¥, ¥2,.. ., ¥m, respectively.

Without loss of generality, we may assume that m < n. Il m = n = 2, then, by
Corollary 8, w(T:UT:) = 1. If m = n # 2, then, by Corollary 8, w(T,UT,) is infinite.

Ifm =n—1,then zy,3n,Z2,¥2,.. ., Taz1,¥Yn-1, T is an acyclic ordering of T, UT,_,.
This ordering satisfies (1) and (2) of Theorem 3 and has no occurences of (2). Thus,
w(T,uT,)=0.

[fm < n -2, note that exur. () =n -1 > 1. Sincem < n — 2, no other
vertex has surplus greater than n — 3. Thus, no acyclic ordering of T, U T}, satisfies
the conditions of Theorem 3. O

4. Bounds on w(D)

In this seclion we give upper and lower bounds on w{ D) (when it is finite).

Theorem 10 Let D be an acyelic digraph with w(D) finile, containing no isolated
vertices, and n = |V(D)]. Then,

wDy=1ifn=2
w(D)=0ifn=3
ﬂ*_-‘.w{ﬂ}glg-l-l ifnz4

and both bounds are atlained.

Proof: If n = 2 then D = P,. By Corollary 5, w(FP;) = 1, e, w(D)=1. ln =3,
then the only acyclic digraphs on three vertices with no isolated vertices are T3, P,
or AF5. By Corollaries 6 and 7, w({D) is infinite except when I = P4 in which case
w({ D) = 0 by Corollary 5.

For n = 4, w(P,) = 0 by Corollary 3, so the lower bound is always attained.

Consider n > 4. Let D be an acyclic digraph on |V(D)| = n vertices with w(D)
finite so that w(D) > w(D') for all other acyclic digraphs D' on n vertices with
w( ') finite. Assume that tournament T realizes D) under the minimum weighted
inconsistencies ranking o. Let V(T) = V(D) U X. Without loss of generality we
may assume that o~'(i) = i. Let m = |V(D)| + |X|. We have already noted that
1,m ¢ X.

We next show that if w(D) =2,then2,m—1¢ X. If 2 € X, then, by Lemma 2,
3 € V(D) and ep(3) = 1 and ep(l) = —1. Since ep(3) = 1, there must be at least
one arc of D of the form (3,i) with 3 > 1, since the arcs of D are inconsistent wilh
the ordering . Since 2 ¢ V(D), the only such arc is (3,1) and thus there is no arc
of the form (i,3), ¢ > 3 in D. Also, since ep(l) = —1 and since there can be no
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Figure 1.

arc of the form (1,i), i > 1 in D, (3,1) is the only arc incident to 1. Thus, the arc
(3,1) is disconnected from the rest of D. Note then that there are no arcs of the form
(4,1), 7 £ 4. So, ep(4) € —1. Hw(D) = 2, then there is some k > 3 such that k € X,
k—1,k+1 € V(D) and ep(k 4+ 1) = 1 and ep(k — 1) = —1. Then, consider the
ordering § on (V(D)U X)\ {2} obtained from o by letting 6 (1) =1, 6 (i —2) =
ford i<k §VWk-1)=3,and & i-1)=difork+1 <i<m. Itiseasily
checked that 6 is a minimum weighted inconsistencies ranking, and that D is the set
of arcs inconsistent with 4. This contradicts the assumption that T realizes [} under
the minimum weighted inconsistencies ranking procedure.

A symmetric argument shows that if w(f) = 2, then m —1 & X.

Now, we have either w{D) € 1 or w(D) > 2and 2,m —1 € X. In the second
case, 1,2,{m —1),m ¢ X. Note that if i € X, then by Lemma 2, 1 +1 € V(D)
and epfi + 1) = +1. So, ep(i + 1) # —1 and again by Lemma 2,i+2 ¢ X. So, if
{i,4} € X, with say j > i, then j —i > 2. Thus, |X| < [3| - 1.

Ifn =4or5andifl w(D) > 2, then by the above bound, w(D) < 1, a contradiction.
So w(D) < 1 in these cases and the examples below show that w(D) = 1 can be
attained.

We now construct acyclic digraphs D, on n > 4 vertices such that w(D,) =
lg] — 1, completing the proof. For n = 4, the allernating path AF; has w{AF,;) =1
by Corollary 7. For n = 5, consider the acyclic digraph D' with V(D') = {1,2,3,5,6}
and A(D') = {(6,3),(6,1),(5,3),(3,2)}. Let T be the tournament with V(T) =
{1,2,3,4,5,6} and arcs (j,i) for j < i except for the arcs of D'. Then T has A(D')
as the set of inconsistent arcs with the ranking o7'(i) = i. (See Figure 1.) Note that

EDJ{I} = -1, Ep-'l:g} = --1, EDF(E) = -1, tprl:“l} = D, Eﬂl(ﬁ] = 1, and EDJ{E} =

So, by Lemma 1, ¢ is assigned to T under the minimum weighted inconsistencies
ranking procedure. From the surplus values of the vertices of D', it is clear that any
acyclic ordering of [’ satislying Theorem 3 has at least one “jump” from epr = +1
to epr = —1. That is, for any acyclic ordering = of D' satislying Theorem 3, there’
is at least one occurence of ep(7'(i)) = +1 and epe(r=7(i 4+ 1)) = +1. Hence, by
Theorem 3, w(’) = | and {rom the tournament T we see that w(D') = 1.

For n even, n > 6, construct the digraph D, on n vertices as follows. Let u =

|3] -1=22andm=n+u=3u+2 Let V(Da) = (3i+1,3i+2:i=0,1,...,u}
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and
A(D.) = {(m,m -3),(m,m—6),(4,1)}U

{(3i+1,3i-1):i=1,...,u}U

{(3i—1,3i =2):i=1,...,ulU

(% +1,9%=4):i=2,...,u~1].
(In the case n = 6, the last set is empty.) Let T be the tournament with V(T) =
{1,....m} =V(D,)uX =V(D,)u{3i:: =1,...,u} and arcs (1,7) for i < j except
for the arcs of D,. Thus, A(D,) is the sct of inconsistent arcs under the ordering

o where ¢7!(i) = i. Also, it can be easily checked that the surplus values for the
vertices in T are:

ep (3i)=0fori=1,...,u,
ep (3i+1l)=+41llori=1,...,u,
ep, {3 +2)=-1fori=0,...,u—1,
ep, (1) = =2 and ep(m) = +2.

Again, 1t is easily checked that the ordering o of V(T) is 2 minimum weighted in-
consistencies ordering by Lemma 1. Finally, note that D, contains the directed path
Ju41,3u—-1,3u-1)+1,3(u—-1)—1,...,4,2. Then the sequence of surplus values
along the path is +1, —1, +1, ..., 41, =1 with u “jumps.” Sincc the remaining two
vertices in V(D,), namely, 1 and m, have surplus values of —2 and 2, respectively,
any acyclic ordering of D, has at least u “jumps.” Thus, by Theorem 3, w(D,) > u
and from the tournament T' we see that w({D,) = u.

Similarly, for n odd, n > 7, construct the digraph D, on n verlices as follows, Let
u=|3-1=22andm=ntu=3u+1). Let V(D,) = (3i +2,3i +3:i =
0,1,...,u}u {1} and

AD,) = {(m,m —3),(m,m —6),(5,1)}uU
{(3t+2,31):i=1,...,u}U
{(35,3i=1):i=1,...,u}U
{(34+2,31-3):i=2,...,u—-1}.

(In the case n = T, the last sel is empty.) Let T be the tournament with V(T) =
{L,....m} =V(D)uX =V(D,)U{3i+1:i=1,...,u} and arcs (i,j) fori < j
except for the ares of D,. Thus, A(D,) is Lthe set of inconsistent arcs under the
ordering o where 07'(i) = i. Also, it can be casily checked that the surplus values
for the vertices in T are:

ep (3 +1)=0fori=1,...,u,
ep (3i)=—1fori=1,...,u,
ep (3 +2)=+1lfori=1,...,u,
ep, (1) = ep(2) = —1 and ep(m) = +2.

Again, it is easily checked that the ordering o of V(T) is a minimum weighted in-
consistencies ordering by Lemma 1. Finally, note that D, contains Lhe directed path
Ju+2,3u, H(u-1)+2,3u-1),...,5 3. Then the sequence of surplus values along the
path is +1, -1, +1, ..., 41, =1 wilh u “jumps.” Since the remaining three verlices
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in V(D,), namely, 1, 2 and m, have surplus values of —1, —1 and 2, respectively, any
acyclic ordering of D, has at least u “jumps.” Thus, by Theorem 3, w(D,) > u and
from the tournament T we see that w(D,) = u. O
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